Published
Nowcasting the State of the Economy: An Application of Linear Combinations of Dynamic Common Factors to the Colombian Economy
Prediciendo el estado de la economía: una aplicación de combinaciones lineales de factores comunes dinámicos a la economía colombiana
DOI:
https://doi.org/10.15446/rce.v48n1.113209Keywords:
Coincident index, Genetic algorithms, Macroeconomics, Nonconvex optimization, Multivariate time series (en)Índice coincidente, Algoritmos genéticos, Macroeconomía, Optimización no convexa, Series de tiempo multivariadas (es)
Downloads
The main goal of this work is to propose a general methodology to create a coincident index for the economy of a given country or region based on linear combinations of dynamic common factors, and to validate it on simulated scenarios and on a case study for Colombia. The methodology proposed can effectively handle both stationary and nonstationary macroeconomic variables as input and provides tools to obtain point estimates and confidence regions, and to test hypotheses for the linear-combination coefficients. This work highlights how promising this new proposal is in terms of its contribution with respect to its antecedents in the literature, by showcasing situations in which a linear combination of dynamic factors can enhance the accuracy of the nowcast and address potential problems and limitations of considering only one dynamic factor as index. The application of this work to the Colombian economy is based on the macroeconomic analysis conducted by previous researchers. This work, however, considers and analyzes a much larger set of candidate indices via linear combinations of factors, providing consistent results; which strengthens and validates their previous findings.
El objetivo principal de este trabajo es proponer una metodología general para crear un índice coincidente para la economía de un país o región determinado, basada en combinaciones lineales de factores comunes dinámicos, y validarla en escenarios simulados y en un estudio de caso para Colombia. La metodología propuesta puede manejar de manera efectiva tanto variables macroeconómicas estacionarias como no estacionarias como datos de entrada y proporciona herramientas para obtener estimaciones puntuales y regiones de confianza, así como para probar hipótesis sobre los coeficientes de la combinación lineal. Este trabajo destaca lo prometedora que es esta nueva propuesta en términos de su contribución con respecto a sus antecedentes en la literatura, al mostrar situaciones en las que una combinación lineal de factores dinámicos puede mejorar la precisión del pronóstico del estado de la economía, además de abordar problemas y limitaciones potenciales al considerar solo un factor dinámico como índice. La aplicación de este trabajo a la economía colombiana se basa en el análisis macroeconómico realizado por investigadores previos. Sin embargo, este trabajo considera y analiza un conjunto mucho más amplio de índices candidatos a través de combinaciones lineales de factores, proporcionando resultados consistentes, lo que fortalece y valida sus hallazgos anteriores.
References
Altissimo, F., Cristadoro, R., Forni, M., Lippi, M. & Veronese, G. (2010), 'New Eurocoin: tracking economic growth in real time', The Review of Economics and Statistics 92(4), 1024-1034.
Arrieta-Prieto, M. E. (2019), 'Selection of a linear combination of common factors as a coincident index for the Colombian economy'. https://repositorio.unal.edu.co/handle/unal/69244
Banerji, A. (1999), The lead pro-le and other non-parametric tools to evaluate survey series as leading indicators, in 'Use of Survey Data for Industry, Research and Economic Policy, selected papers presented at the 24th CIRET Conference, Wellington, New Zealand'.
Bazaraa, M. S., Sherali, H. D. & Shetty, C. M. (2013), Nonlinear programming: theory and algorithms, John Wiley & Sons.
Bickel, P. J. & Doksum, K. A. (2015), Mathematical statistics: basic ideas and selected topics, volume I, Vol. 117, CRC Press.
Blumenson, L. (1960), 'A derivation of n-dimensional spherical coordinates', The American Mathematical Monthly 67(1), 63-66.
Bujosa, M., García-Ferrer, A. & Juan, A. (2013), 'Predicting recessions with factor linear dynamic harmonic regressions', Journal of Forecasting 32(6), 481-499.
Burns, A. F. & Mitchell, W. C. (1946), Measuring business cycles, Technical report, National Bureau of Economic Research, Inc.
Chudt, N. & Nieto, F. (2018), 'Construcción de un índice coincidente para la actividad económica Colombiana', Comunicaciones en Estadística 11, 107-128.
Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005), 'The generalized dynamic factor model: one-sided estimation and forecasting', Journal of the American Statistical Association 100(471), 830-840.
Hamilton, J. D. (1994), Time Series Analysis, Princeton: Princeton university press.
Holmes, E. E., Ward, E. J. & Wills, K. (2012), 'MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data', R Journal 4(1).
Lam, C., Yao, Q. et al. (2012), 'Factor modeling for high-dimensional time series: inference for the number of factors', The Annals of Statistics 40(2), 694-726.
Lütkepohl, H. (2005), New introduction to multiple time series analysis, Springer Science & Business Media.
Martínez, W., Nieto, F. H. & Poncela, P. (2016), 'Choosing a dynamic common factor as a coincident index', Statistics & Probability Letters 109, 89-98.
Nieto, F. H., Pena, D. & Saboyá, D. (2016), 'Common seasonality in multivariate time series', Statistica Sinica pp. 1389-1410.
Peña, D. & Poncela, P. (2006), 'Nonstationary dynamic factor analysis', Journal of Statistical Planning and Inference 136(4), 1237-1257.
Peña, D. & Tsay, R. S. (2021), Statistical learning for big dependent data, John Wiley & Sons.
Pivetta, F. & Reis, R. (2007), 'The persistence of inflation in the United States', Journal of Economic Dynamics and Control 31(4), 1326-1358.
Rios, L. M. & Sahinidis, N. V. (2013), 'Derivative-free optimization: a review of algorithms and comparison of software implementations', Journal of Global Optimization 56(3), 1247-1293.
Scrucca, L. et al. (2013), 'GA: a package for genetic algorithms in R', Journal of Statistical Software 53(4), 1-37.
Stock, J. H. & Watson, M. W. (1992), 'A probability model of the coincident economic indicators', Leading Economic Indicators: New Approaches and Forecasting Records p. 63.
Stock, J. H. & Watson, M. W. (2011), Dynamic factor models, in 'The Oxford Handbook of Economic Forecasting'.
v4.1.2, R Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Wei, William WS (2006), Time series analysis, Pearson Addison Wesley.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).