Published
Estimation of Inverse Pareto Distribution under Unified Hybrid Censoring
Estimación de la distribución inversa de Pareto bajo censura híbrida unificada
DOI:
https://doi.org/10.15446/rce.v48n2.113472Keywords:
Inverse Pareto distribution, Condence interval, Credible interval, Unified Hybrid Censoring, Monte Carlo simulation (en)Distribución inversa de Pareto, Censura híbrida unificada, Intervalo de confianza, Intervalo de credibilidad, Simulación de Monte Carlo (es)
Downloads
In this paper, some estimators of the unknown parameter, reliability function and hazard rate function of Inverse Pareto distribution under Unified Hybrid Censoring were derived. The maximum likelihood method, Bayes and E-Bayes method were used for estimating the parameter, reliability function and hazard rate function of the Inverse Pareto Distribution. Approximate confidence intervals (confidence interval and credible interval) were also derived. Comparisons were made in sense of mean squared error and asymptotic relative efficiency through Monte Carlo simulation. Finally, the proposed methods can be understood through illustrating the results of the real data analysis.
En este artículo, algunos estimadores del parámetro desconocido, la función de confiabilidad y la función de tasa de riesgo de Se obtuvo la distribución inversa de Pareto bajo la censura híbrida unificada. Se utilizó el método de máxima verosimilitud, el método de Bayes y el de E-Bayes para estimar el parámetro, función de confiabilidad y función de tasa de riesgo de la distribución inversa de Pareto. Aproximado También se derivaron intervalos de confianza (intervalo de confianza e intervalo de credibilidad). Las comparaciones se realizaron en sentido de error cuadrático medio y eficiencia relativa asintótica mediante Monte Carlo. simulación. Finalmente, los métodos propuestos pueden entenderse ilustrando los resultados del análisis de datos reales.
References
Ateya, S. (2017), `Estimation under inverse Weibull distribution based on Balakrishnan's unified hybrid censored scheme', Communications in Statistics-Simulation and Computation 46, 3645-3666.
Balakrishnan, N., Rasouli, A. & Sanjari Farsipour, N. (2008), `Exact likelihood inference based on a unified hybrid censored sample from the exponential distribution', Journal of Statistical Computation and Simulation 78, 475-488. DOI: https://doi.org/10.1080/00949650601158336
Chandrasekar, B., Childs, A. & Balakrishnan, N. (2004), `Exact likelihood inference for the exponential distribution under generalized type-I and type-II hybrid censoring', Naval Research Logistics (NRL) 51, 994-1004. DOI: https://doi.org/10.1002/nav.20038
Childs, A., Chandrasekar, B., Balakrishnan, N. & Kundu, D. (2003), `Exact likelihood inference based on type-I and type-II hybrid censored samples from the exponential distribution', Annals of the Institute of Statistical Mathematics 55, 319-330. DOI: https://doi.org/10.1007/BF02530502
Dankunprasert, S., Jaroengeratikun, U. & Talangtam, T. (2021), `The properties of inverse pareto distribution and its application to extreme events', Thailand Statistician 19(1), 1-12.
Guo, L. & Gui, W. (2018), `Bayesian and classical estimation of the inverse pareto distribution and its application to strength-stress models', American Journal of Mathematical and Management Sciences 37(1), 80-92. DOI: https://doi.org/10.1080/01966324.2017.1383217
Holmberg, P. (2009), `Supply function equilibria of pay-as-bid auctions', Journal of Regulatory Economics 36(2), 154-177. DOI: https://doi.org/10.1007/s11149-009-9091-6
Jeon, Y. & Kang, S. (2021), `Estimation of the Rayleigh distribution under unified hybrid censoring', Austrian Journal of Statistics 50, 59-73. DOI: https://doi.org/10.17713/ajs.v50i1.990
Kaushik, A. (2019), `A progressive interval type-I censored life test plan for Rayleigh distribution', Austrian Journal of Statistics 48, 76-86. DOI: https://doi.org/10.17713/ajs.v48i3.781
Kumar, I., Jha, S. & Kumar, K. (2021), `On some estimation methods for the inverse Pareto distribution', Annals of Data Science. DOI: https://doi.org/10.1007/s40745-021-00356-7
Kumar, K. & Kumar, I. (2020), `Parameter estimation for inverse pareto distribution with randomly censored lifetime data', International Journal of Agricultural and Statistical Sciences 16(1), 419-430.
Kumar, K., Kumar, S., Garg, R. & Kumar, I. (2024), Reliability estimation for inverse Pareto lifetime model based on unifed hybrid censored data', International Journal of System Assurance Engineering and Management. DOI: https://doi.org/10.1007/s13198-024-02265-3
Naghettini, M., Potter, K. W. & Illangasekare, T. (1996), `Estimating the upper tail of food-peak frequency distributions using hydrometeorological information', Water Resources Research 32(6), 1729-1740. DOI: https://doi.org/10.1029/96WR00200
Panahi, H. & Sayyareh, A. (2016), `Estimation and prediction for a unified hybrid censored Burr type XII distribution', Journal of Statistical Computation and Simulation 86, 55-73. DOI: https://doi.org/10.1080/00949655.2014.993985
Wildani, A., Miller, E. L., Adams, I. F. & Long, D. D. (2014), Perses: Data layout for low impact failures, in `IEEE 22nd International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MAS-COTS)', IEEE, pp. 71-80. DOI: https://doi.org/10.1109/MASCOTS.2014.17
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






