Published
Extreme Value Modeling with the Compound Poisson Process: Predicting Speeding Fine Collections
Modelado de valores extremos utilizando el proceso de poisson compuesto: predicción de la recaudación de multas por exceso de velocidad
DOI:
https://doi.org/10.15446/rce.v48n1.113610Keywords:
Extreme value theory, Speeding violations, Compound Poisson process, Bayesian approach. (en)Enfoque bayesiano, Infracciones por exceso de velocidad, Proceso de Poisson compuesto, Teoría de valores extremos.} (es)
Downloads
Speeding violations are intended as both punitive and educational actions for drivers who exceed the maximum allowed speed on the roads. From a tax collection perspective, they have a significant impact on the municipal budget. Extreme Value Theory has been a valuable tool for modeling the distribution of speeding violations. Additionally, it is equally important to model the daily number of speeding occurrences. A powerful method for jointly modeling both variables is the Compound Poisson Process. By understanding both speeding behavior and the number of infractions, we can estimate the expected value of total tax collections. A mixture of Gamma densities combining with the Generalized Pareto Distribution (GPD) in tail was proposed to model the distribution of speeding values. The results indicated significant potential for tax collection.
Las infracciones por exceso de velocidad están destinadas tanto a acciones punitivas como educativas para los conductores que superan la velocidad máxima permitida en las carreteras. Desde una perspectiva de recaudación fiscal, tienen un impacto significativo en el presupuesto municipal. La Teoría de Valores Extremos ha sido una herramienta valiosa para modelar la distribución de las infracciones por exceso de velocidad. Además, es igualmente importante modelar el número diario de estas infracciones. Un método poderoso para modelar ambas variables conjuntamente es el Proceso de Poisson Compuesto. Al comprender tanto el comportamiento de los conductores como el número de infracciones, podemos estimar el valor esperado de la recaudación total de impuestos. Se propuso una mezcla de densidades Gamma combinada con la Distribución Generalizada de Pareto (GPD, por sus siglas en inglés) en la cola para modelar la distribución de los valores de exceso de velocidad. Los resultados indicaron un potencial significativo para la recaudación fiscal.
References
Adelson, R. M. (1966), 'Compound poisson distributions', Journal of the Operational Research Society 17, 73-75.
Ata, N. & Ozel, G. (2013), 'Survival functions for the frailty models based on the discrete compound poisson process', Journal of Statistical Computation and Simulation 11, 2105-2116.
Casella, G. & Berger, R. L. (2001), Statistical Inference, Cengage Learning; 2nd ed.
Coles, S. G. (2001), An Introduction to Statistical Modelling of Extreme Values, Springer.
Embrechts, P., Küppelberg, C. & Mikosch, T. (1997), Modelling Extremal Events for Insurance and Finance, New York: Springer.
Fisher, R. A. & Tippett, L. H. C. (1928), 'On the estimation of the frequency distributions of the largest and smallest sumber of a sample', Proceedings of the Cambridge Philosophical Society 24, 180-190.
Jenkinson, A. F. (1955), 'The frequency distribution of the annual maximum (or minimum) values of meteorological events', Quarterly Journal of the Royal Meteorology Society 81, 158-171.
Nascimento, F. F., Gamerman, D. & Lopes, H. F. (2012), 'A semiparametric bayesian approach to extreme value estimation', Statistics and Computing 22, 661-675.
Pickands, J. (1975), 'Statistical inference using extreme order statistics', Annals of Statistics 3, 119-131.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. (2002), 'Bayesian measures of model complexity and -t', Journal of the Royal Statistical Society B 64, 583-639.
von Mises, R. (1954), 'La distribution de la plus grande de n valeurs', American Mathematical Society 2, 271-294.
Wiper, M., Rios Insua, D. & Ruggeri, F. (2001), 'Mixtures of gamma distributions with applications', Journal of Computational and Graphical Statistics 10, 440-454.
Zhang, H., Liu, Y. & Li, B. (2014), 'Notes on discrete compound poisson model with applications to risk theory', Insurance: Mathematics and Economics 59, 325-336.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).