Published
Efficient Parameter Estimation for Claim-Time Behaviour in Insurance Portfolios: MCMC Simulation Analysis of MLE and MAP Techniques
Estimación eficiente de los parámetros del comportamiento siniestral de las carteras de seguros: Análisis de simulación MCMC de las técnicas MLE y MAP.
DOI:
https://doi.org/10.15446/rce.v48n2.114887Keywords:
Bayesian Inference, Maximum Likelihood Estimation, Maximum a-Posteriori, Markov Chain Monte Carlo Simulation. (en)Estimación de máxima verosimilitud, Inferencia bayesiana, Maximum a posteriori, Simulación Monte Carlo con cadenas de Markov (es)
Downloads
The study investigated the dynamics of _commencement-to-event-time-behaviour in life insurance portfolios, employing Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP) with the Markov Chain Monte Carlo (MCMC) simulation technique. Focusing on the Lognormal and Exponential distributions for their efficacy in modelling time-to-occurrence data, the research simulated 120 observations from both distributions and estimated parameters using the first 80 ordered samples. Remarkably, estimates for lognormal parameters obtained through MLE and MAP_MCMC were highly similar, with errors well within 10% of the actual values, highlighting the accuracy of both methods. The study also explored the robustness of the MAP_MCMC technique to various prior distributions, demonstrating its effectiveness across different priors, including Exponential, Normal, Gamma, Pareto, and Weibull prior distributions. In the case of the exponential distribution, both MLE and MAP_MCMC techniques performed exceptionally well, providing estimates within 5% of the true value, with MAP _MCMC exhibiting remarkable precision, just 1% off the true value. Real-life data fitted to the Gamma distribution showed that MLE and MAP _MCMC methods, using censored data, closely approximated benchmark estimates from the method of moments. The MAP_MCMC approach slightly outperformed the MLE.
El estudio investigó la dinámica del comportamiento “inicio-acontecimiento-tiempo” en las carteras de seguros de vida, empleando la Estimación de Máxima Verosimilitud (MLE) y la Máxima A Posteriori (MAP) con la técnica de simulación Markov Chain Monte Carlo (MCMC). Centrándose en las distribuciones Lognormal y Exponencial por su eficacia en la modelización de datos de tiempo de ocurrencia, la investigación simuló 120 observaciones de ambas distribuciones y estimó los parámetros utilizando las 80 primeras muestras ordenadas. Sorprendentemente, las estimaciones de los parámetros lognormales obtenidas mediante MLE y MAP_MCMC fueron muy similares, con errores muy inferiores al 10% de los valores reales, lo que pone de relieve la precisión de ambos métodos. El estudio también exploró la robustez de la técnica MAP_MCMC a varias distribuciones a priori, demostrando su eficacia a través de diferentes distribuciones a priori, incluyendo Exponencial, Normal, Gamma, Pareto y Weibull. En el caso de la distribución exponencial, tanto las técnicas MLE como MAP_MCMC obtuvieron resultados excepcionales, proporcionando estimaciones dentro del 5% del valor real, con MAP_MCMC mostrando una precisión notable, sólo un 1% por debajo del valor real. Los datos reales ajustados a la distribución Gamma mostraron que los métodos MLE y MAP_MCMC, utilizando datos censurados, se aproximaron mucho a las estimaciones de referencia del método de los momentos. El método MAP_MCMC superó ligeramente al MLE.
References
Abdulkadir, U. I. & Fernando, A. (2024), 'A deep learning model for insurance claims predictions.', Journal of Artificial Intelligence (2579-0021) 6. DOI: https://doi.org/10.32604/jai.2024.045332
Arik, A., Cairns, A. J., Dodd, E., Macdonald, A. S., Shao, A. & Streftaris, G. (2023), 'Insurance pricing for breast cancer under different multiple state models', arXiv preprint arXiv:2311.15975 .
Bahnemann, D. (2015), 'Distributions for actuaries', CAS monograph series 2, 1-200.
Bolstad, W. (2007), 'Introduction to bayesian statistics. america: A john wiley & sons'. DOI: https://doi.org/10.1002/9780470181188
Clemente, C., Guerreiro, G. R. & Bravo, J. M. (2023), 'Modelling motor insurance claim frequency and severity using gradient boosting', Risks 11(9), 163. DOI: https://doi.org/10.3390/risks11090163
Cousineau, D. & Helie, S. (2013), 'Improving maximum likelihood estimation using prior probabilities: A tutorial on maximum a posteriori estimation and an examination of the weibull distribution', Tutorials in Quantitative Methods for Psychology 9(2), 61-71. DOI: https://doi.org/10.20982/tqmp.09.2.p061
Cox, D. (1972), 'Regression models and life tables. jr statist. soc', B34 187. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Cronk, L. & Aktipis, A. (2021), 'Design principles for risk-pooling systems', Nature Human Behaviour 5(7), 825-833. DOI: https://doi.org/10.1038/s41562-021-01121-9
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), 'Maximum likelihood from incomplete data via the em algorithm', Journal of the royal statistical society: series B (methodological) 39(1), 1-22. DOI: https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Edwards, W., Lindman, H. & Savage, L. J. (1963), 'Bayesian statistical inference for psychological research.', Psychological review 70(3), 193. DOI: https://doi.org/10.1037/h0044139
Ekberg, S. (2015), 'Claim-level loss reserving for workers compensation insurance'.
Eric, U., Olusola, O. M. O. & Eze, F. C. (2021), 'A study of properties and applications of gamma distribution', African Journal of Mathematics and Statistics Studies 4(2), 52-65. DOI: https://doi.org/10.52589/AJMSS-MR0DQ1DG
Feng, R. (2023), Economics of risk and insurance, in 'Decentralized insurance: Technical foundation of business models', Springer, pp. 55-84. DOI: https://doi.org/10.1007/978-3-031-29559-1_3
Gilenko, E. V. & Mironova, E. A. (2017), 'Modern claim frequency and claim severity models: An application to the russian motor own damage insurance market', Cogent Economics & Finance 5(1), 1311097. DOI: https://doi.org/10.1080/23322039.2017.1311097
Gilks, W. R., Richardson, S. & Spiegelhalter, D. (1995), Markov chain Monte Carlo in practice, CRC press. DOI: https://doi.org/10.1201/b14835
Hesse, C. A., Oduro, F. T., Ofosu, J. B. & Kpeglo, E. D. (2016), 'Assessing the risk of road traffic fatalities across sub-populations of a given geographical zone, using a modified smeed's model', International Journal of Statistics and Probability 5(6), 121-132. DOI: https://doi.org/10.5539/ijsp.v5n6p121
Jaroengeratikun, U., Bodhisuwan, W. & Thongteeraparp, A. (2012), 'A Bayesian inference of non-life insurance based on claim counting process with periodic claim intensity', Open Journal of Statistics 2(2), 177-183. DOI: https://doi.org/10.4236/ojs.2012.22020
Kaplan, E. L. & Meier, P. (1958), 'Nonparametric estimation from incomplete observations', Journal of the American statistical association 53(282), 457-481. DOI: https://doi.org/10.1080/01621459.1958.10501452
Kleinbaum, D. G. & Klein, M. (1996), Survival analysis a self-learning text, Springer. DOI: https://doi.org/10.2307/2532873
Kochenburger, P. & Salve, P. (2023), An introduction to insurance regulation, in 'Research handbook on international insurance law and regulation', Edward Elgar Publishing, pp. 247-280. DOI: https://doi.org/10.4337/9781802205893.00022
Kundu, D., Gupta, R. D. & Manglick, A. (2005), 'Discriminating between the lognormaland generalized exponential distributions', Journal of Statistical Planning and Inference 127(1-2), 213-227. DOI: https://doi.org/10.1016/j.jspi.2003.08.017
Landriault, D., Willmot, G. E. & Xu, D. (2014), 'On the analysis of time dependent claims in a class of birth process claim count models', Insurance: Mathematics and Economics 58, 168-173. DOI: https://doi.org/10.1016/j.insmatheco.2014.07.001
Liedtke, P. M. (2007), 'What's insurance to a modern economy?', The Geneva Papers on Risk and Insurance-Issues and Practice 32, 211-221. DOI: https://doi.org/10.1057/palgrave.gpp.2510128
Louzada, F. & Ramos, P. L. (2018), 'Efficient closed-form maximum a posteriori estimators for the gamma distribution', Journal of Statistical Computation and Simulation 88(6), 1134-1146. DOI: https://doi.org/10.1080/00949655.2017.1422503
Mann, N. R., Schafer, R. E. & Singpurwalla, N. D. (1974), 'Methods for statistical analysis of reliability and life data(book)', Research supported by the U. S. Air Force and Rockwell International Corp. New York, John Wiley and Sons, Inc., 1974. 573 p.
Moumeesri, A., Klongdee, W. & Pongsart, T. (2020), 'Bayesian bonus-malus premium with poisson-lindley distributed claim frequency and lognormal-gamma distributed claim severity in automobile insurance', WSEAS Transactions on Mathematics 19(46), 443-451. DOI: https://doi.org/10.37394/23206.2020.19.46
Ndwandwe, L., Allison, J., Santana, L. & Visagie, J. (2024), 'Revisiting the memoryless property-testing for the pareto type i distribution', arXiv preprint arXiv:2401.13777. DOI: https://doi.org/10.17713/ajs.v54i2.1871
Nocedal, J. & Wright, S. J. (1999), Numerical optimization, Springer. DOI: https://doi.org/10.1007/b98874
Ofosu, J. & Hesse, C. (2011), Introduction to probability and probability distributions, EPP Books Services.
Omari, C. O., Nyambura, S. G. & Mwangi, J. M. W. (2018), 'Modeling the frequency and severity of auto insurance claims using statistical distributions'. DOI: https://doi.org/10.4236/jmf.2018.81012
Press, W. H. (1992), The art of scientific computing, Cambridge university press.
Ramani, S., Jafari, H. & Kia, G. S. (2023), 'Ordering results of aggregate claim amounts from two heterogeneous portfolios', Contemporary Mathematics pp. 1279-1290. DOI: https://doi.org/10.37256/cm.4420232494
Riaman, R., Octavian, A., Supian, S., Firman, S. & Saputra, J. (2023), 'Estimating the value-at-risk (var) in stock investment of insurance companies: An application of the extreme value theory', Decision Science Letters 12, 749-758. DOI: https://doi.org/10.5267/j.dsl.2023.7.001
van der Heide, A. (2023), Life insurance in the age of _nance, in 'Dealing in Uncertainty', Bristol University Press, pp. 1-18. DOI: https://doi.org/10.1332/policypress/9781529221350.003.0001
Yohandoko, S., Prabowo, A., Yakubu, U. A. & Wang, C. (2023), 'Life insurance aggregate claims distribution model estimation', Life 4(4), 117-125. DOI: https://doi.org/10.47194/orics.v4i4.271
Zaçaj, O., Raço, E., Haxhi, K., Llagami, E. & Hila, K. (2022), 'Bootstrap methods for claims reserving: R language approach', WSEAS Transactions on Mathematics 21, 252-259. DOI: https://doi.org/10.37394/23206.2022.21.30
Zakaria, Z., Azmi, N. M., Hassan, N. F. H. N., Salleh, W. A., Tajuddin, M. T. H. M., Sallem, N. R. M. & Noor, J. M. M. (2016), 'The intention to purchase life insurance: A case study of staff in public universities', Procedia Economics and Finance 37, 358-365. DOI: https://doi.org/10.1016/S2212-5671(16)30137-X
Zhou, L. (2024), Intelligent insurance actuarial model under machine learning and data mining, in '2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA)', IEEE, pp. 1726-1731. DOI: https://doi.org/10.1109/ICIPCA61593.2024.10708777
Zuanetti, D. A., Diniz, C. A. & Leite, J. G. (2006), 'A lognormal model for insurance claims data', REVSTAT-Statistical Journal 4(2), 131-142.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






