Published
Steps for Diagnostic Precision Meta-Analysis in Binary Response Studies: A Case of the Application by Hierarchical Modeling
Pasos para el metaanálisis de precisión diagnóstica en estudios de respuesta binaria: un caso de aplicación mediante modelización jerárquica
DOI:
https://doi.org/10.15446/rce.v48n2.115786Keywords:
Bivariate model, Diagnostic accuracy, Heterogeneity, HSROC, Meta-analysis. (en)Modelo bivariante, Precisión diagnóstica, Heterogeneidad, HSROC, Meta-análisis. (es)
Downloads
The discriminatory capacity of a test is commonly expressed in terms of sensitivity and specificity, and there is generally a compromise relationship between these two measures, as an increasing threshold for defining the positivity of the test results in a decrease in sensitivity and an increase in specificity. Recommended methods for the meta-analysis of diagnostic tests, such as the bivariate model, focus on estimating a summary sensitivity and specificity at a common threshold, while the Hierarchical Summary Receiver Operating Characteristic (HSROC) model focuses on estimating a summary curve from studies that have used different thresholds. Therefore, we will explain the hierarchical modeling for meta-analysis of the study of precision in diagnostic tests, and we will design a decision scheme that helps to understand the models to choose the most appropriate in situations of heterogeneity in the studies, and illustrate its application in a systematic review, studying the properties and assumptions of meta-analytic procedures to synthesize the quantitative evidence of the parameters. For which, we used a systematic review that obtained summary estimates for the diagnosis of invasive aspergillosis, being our modeling framework the NLMIXED procedure of SAS, obtaining summary estimates for sensitivity and specificity for the bivariate model of 0.7708 and 0.8521, from a total of 27 studies involving 3,943 patients, and for the HSROC case the values were 0.7304 and 0.8867 respectively. Finally, we hope that this article will provide clinicians with a sufficient understanding of the terminology and statistical methods, obtaining plausible interpretations of the results in systematic reviews.
La capacidad discriminatoria de una prueba se expresa comúnmente en términos de sensibilidad y especificidad, y generalmente existe una relación de compromiso entre estas dos medidas, ya que un umbral creciente para definir la positividad de la prueba resulta en una disminución de la sensibilidad y un aumento de la especificidad. Los métodos recomendados para el metaanálisis de pruebas diagnósticas, como el modelo bivariado, se centran en estimar una sensibilidad y especificidad resumidas en un umbral común, mientras que el modelo HSROC se enfoca en estimar una curva resumen a partir de estudios que han utilizado diferentes umbrales. Por lo tanto, explicaremos el modelado jerárquico para el metaanálisis del estudio de precisión en pruebas diagnósticas, y diseñaremos un esquema de decisión que ayude a comprender los modelos para elegir el más adecuado en situaciones de heterogeneidad en los estudios, e ilustraremos su aplicación en una revisión sistemática, estudiando las propiedades y supuestos de los procedimientos metaanalíticos para sintetizar la evidencia cuantitativa de los parámetros. Para ello, utilizamos una revisión sistemática que obtuvo estimaciones resumidas para el diagnóstico de aspergilosis invasiva, siendo nuestro marco de modelado el procedimiento NLMIXED de SAS, obteniendo estimaciones resumidas de sensibilidad y especificidad para el modelo bivariado de 0.7708 y 0.8521, a partir de un total de 27 estudios que involucraron a 3,943 pacientes, y para el caso del HSROC los valores fueron 0.7304 y 0.8867 respectivamente. Finalmente, esperamos que este artículo brinde a los clínicos una comprensión suficiente de la terminología y los métodos estadísticos, obteniendo interpretaciones plausibles de los resultados en revisiones sistemáticas.
References
Bossuyt, P. M., Irwig, L., Craig, J. & Glasziou, P. (2006), 'Comparative accuracy: assessing new tests against existing diagnostic pathways', Bmj 332(7549), 1089-1092. DOI: https://doi.org/10.1136/bmj.332.7549.1089
Dahabreh, I. J., Trikalinos, T. A., Lau, J. & Schmid, C. (2012), 'An empirical assessment of bivariate methods for meta-analysis of test accuracy [internet]'.
Harbord, R. M., Deeks, J. J., Egger, M., Whiting, P. & Sterne, J. A. (2007), 'A unification of models for meta-analysis of diagnostic accuracy studies', Biostatistics 8(2), 239-251. DOI: https://doi.org/10.1093/biostatistics/kxl004
Harbord, R. M., Whiting, P., Sterne, J. A., Egger, M., Deeks, J. J., Shang, A. & Bachmann, L. M. (2008), 'An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary', Journal of Clinical Epidemiology 61(11), 1095-1103. DOI: https://doi.org/10.1016/j.jclinepi.2007.09.013
Higgins, J. P. & Thompson, S. G. (2002), 'Quantifying heterogeneity in a meta analysis', Statistics in Medicine 21(11), 1539-1558. DOI: https://doi.org/10.1002/sim.1186
Irwig, L., Macaskill, P., Glasziou, P. & Fahey, M. (1995), 'Meta-analytic methods for diagnostic test accuracy', Journal of Clinical Epidemiology 48(1), 119-130. DOI: https://doi.org/10.1016/0895-4356(94)00099-C
Leeflang, M. M., Debets-Ossenkopp, Y. J., Wang, J., Visser, C. E., Scholten, R. J., Hooft, L., Bijlmer, H. A., Reitsma, J. B., Zhang, M., Bossuyt, P. M. et al. (1996), 'Galactomannan detection for invasive aspergillosis in immunocompromised patients', Cochrane Database of Systematic Reviews 2017(9). DOI: https://doi.org/10.1002/14651858.CD007394.pub2
Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R. & Takwoingi, Y. (2010), 'Cochrane handbook for systematic reviews of diagnostic test accuracy'.
Menke, J. (2010), 'Bivariate random-effects meta-analysis of sensitivity and specificity with sas proc glimmix', Methods of Information in Medicine 49(01), 54-64. DOI: https://doi.org/10.3414/ME09-01-0001
Moses, L. E., Shapiro, D. & Littenberg, B. (1993), 'Combining independent studies of a diagnostic test into a summary roc curve: data-analytic approaches and some additional considerations', Statistics in Medicine 12(14), 1293-1316. DOI: https://doi.org/10.1002/sim.4780121403
Novielli, N., Cooper, N. J. & Sutton, A. J. (2013), 'Evaluating the cost-effectiveness of diagnostic tests in combination: is it important to allow for performance dependency?', Value in health 16(4), 536-541. DOI: https://doi.org/10.1016/j.jval.2013.02.015
Pambabay-Calero, J., Bauz-Olvera, S., Nieto-Librero, A., Sánchez-García, A. & Galindo-Villardón, P. (2021), 'Hierarchical modeling for diagnostic test accuracy using multivariate probability distribution functions', Mathematics 9(11), 1310. DOI: https://doi.org/10.3390/math9111310
Pambabay-Calero, J. J., Bauz-Olvera, S. A., Nieto-Librero, A. B., Galindo- Villardon, M. P. & Hernandez-Gonzalez, S. (2018), 'An alternative to the cochran-(q) statistic for analysis of heterogeneity in meta-analysis of diagnostic tests based on hj biplot', Investigación Operacional 39(4), 536-545.
Pambabay-Calero, J. J., Bauz-Olvera, S. A., Nieto-Librero, A. B., Galindo- Villardón, M. P. & Sánchez-García, A. B. (2020), 'A tutorial for meta-analysis of diagnostic tests for low-prevalence diseases: Bayesian models and software', Methodology 16(3), 258-277. DOI: https://doi.org/10.5964/meth.4015
Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M. & Zwinderman, A. H. (2005), 'Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews', Journal of Clinical Epidemiology 58(10), 982-990. DOI: https://doi.org/10.1016/j.jclinepi.2005.02.022
Ristow, O., Schnug, G., Smielowksi, M., Moratin, J., Pilz, M., Engel, M., Freudlsperger, C., Ho_mann, J. & Rückschloÿ, T. (2023), 'Diagnostic accuracy comparing opt and cbct in the detection of non-vital bone changes before tooth extractions in patients with antiresorptive intake', Oral Diseases 29(3), 1039-1049. DOI: https://doi.org/10.1111/odi.14048
Rutter, C. M. & Gatsonis, C. A. (2001), 'A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations', Statistics in Medicine 20(19), 2865-2884. DOI: https://doi.org/10.1002/sim.942
Schumacher, M. & Schulgen-Kristiansen, G. (2008), Methodik klinischer Studien: Methodische Grundlagen der Planung, Durchführung und Auswertung, Springer-Verlag. DOI: https://doi.org/10.1007/978-3-540-85136-3
Watjer, R. M., Bonten, T. N., Arkesteijn, M. A., Quint, K. D., van der Beek, M. T., van der Raaij-Helmer, L. M., Numans, M. E. & Eekhof, J. A. (2023), 'The accuracy of clinical diagnosis of onychomycosis in dutch general practice: a diagnostic accuracy study', BJGP open 7(3). DOI: https://doi.org/10.3399/BJGPO.2022.0186
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






