Published

2025-01-01

Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights

Modelado de supervivencia defectuosa y análisis de la tasa de curación del COVID-19: un estudio comparativo entre localizaciones usando enfoques paramétricos y no paramétricos con perspectivas demográficas

DOI:

https://doi.org/10.15446/rce.v48n1.115842

Keywords:

Cure rate, Cross-location, Defective modeling, Survival analysis (en)
Análisis de supervivencia, Comparación entre ubicaciones, Modelado defectuoso, Tasa de curación. (es)

Downloads

Authors

  • Hamdeni Tasnime Statistics’ Departement, Higher School of Statistics and Information Analysis (ESSAI), University of Carthage, Tunis, Tunisia
  • Mohamed Toumi Nasri University of Tunis, Tunis, Tunisia
  • Frederick Tshibasu University of Kinshasa, Kinshasa
  • Rihab Loukil University of Tunis
  • Soufiane Gasmi University of Tunis, Tunis, Tunisia

The COVID-19 pandemic has inflicted substantial global morbidity and mortality since December 2019. This study endeavors to model the survival and cure rates of COVID-19 patients using advanced defective modeling techniques and leveraging sophisticated machine learning methods to enhance prediction accuracy. We applied a range of statistical approaches—including parametric, semi-parametric, and non-parametric methods—to fit established and novel models to COVID-19 survival data, with a particular focus on the Defective Gompertz Distribution.

To our knowledge, this study represents the pioneering use of defective modeling techniques for estimating cure rates in COVID-19 research. Furthermore, we conducted a comparative analysis across different locations and countries using geographical and demographic data from our dataset. This exploration aimed to uncover variations in survival and cure rates influenced by factors such as socioeconomic status (SES), urban versus rural residence, and healthcare accessibility.

Our findings revealed significant disparities in survival and cure rates associated with demographic variables such as age, gender, SES, urbanicity, and healthcare access. Additionally, the study assessed the impact of various public health interventions and identified best practices implemented by different countries.

Overall, our results contribute valuable insights to ongoing efforts aimed at comprehending and mitigating the impact of COVID-19 through robust statistical and machine learning modeling techniques. These findings are crucial for informing public health policies and interventions worldwide.

La pandemia de COVID-19 ha causado una morbilidad y mortalidad sustancial a nivel global desde diciembre de 2019. Este estudio tiene como objetivo modelar las tasas de supervivencia y curación de pacientes con COVID-19 utilizando técnicas avanzadas de modelado defectuoso y métodos sofisticados de aprendizaje automático para mejorar la precisión de las predicciones. Aplicamos una variedad de enfoques estadísticos, incluyendo métodos paramétricos, semi paramétricos y no paramétricos, para ajustar modelos establecidos y novedosos a los datos de supervivencia del COVID- 19, con un enfoque particular en la Distribución de Gompertz Defectuosa. Según nuestro conocimiento, este estudio representa el uso pionero de técnicas de modelado defectuoso para estimar tasas de curación en investigaciones relacionadas con COVID-19. Además, realizamos un análisis comparativo entre diferentes ubicaciones y países utilizando datos geográficos y demográficos de nuestro conjunto de datos. Esta exploración buscó identificar variaciones en las tasas de supervivencia y curación influenciadas por factores como el nivel socioeconómico (NSE), la residencia urbana frente a rural y el acceso a la atención médica. Nuestros hallazgos revelaron disparidades significativas en las tasas de supervivencia y curación asociadas con variables demográficas como la edad, el género, el NSE, la urbanización y el acceso a los servicios de salud. Adicionalmente, el estudio evaluó el impacto de diversas intervenciones de salud pública e identificó mejores prácticas implementadas por diferentes países. En general, nuestros resultados aportan información valiosa a los esfuerzos en curso para comprender y mitigar el impacto del COVID-19 mediante técnicas sólidas de modelado estadístico y aprendizaje automático. Estos hallazgos son cruciales para informar políticas e intervenciones de salud pública a nivel mundial.

References

Assche, S. B.-V., Ferraccioli, F., Riccetti, N., Gomez-Ramirez, J., Ghio, D. & Stilianakis, N. I. (2024), `Urban-rural disparities in COVID-19 hospitalisations and mortality: A population-based study on national surveillance data from Germany and Italy', Plos one 19(5), e0301325.

Boag, J. W. (1949), `Maximum likelihood estimates of the proportion of patients cured by cancer therapy', Journal of the Royal Statistical Society. Series B (Methodological) 11(1), 15-53. https://www.jstor.org/stable/2983684

Bozdogan, H. (1987), `Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions', Psychometrika 52(3), 345-370.

Cantor, A. B. & Shuster, J. J. (1992), `Parametric versus non-parametric methods for estimating cure rates based on censored survival data', Statistics in Medicine 11(7), 931-937.

Cao, L., Huang, T.-t., Zhang, J.-x., Qin, Q., Liu, S.-y., Xue, H.-m., Gong, Y.-x., Ning, C.-h., Shen, X.-t., Yang, J.-x. et al. (2020), `Estimation of instant case fatality rate of COVID-19 in Wuhan and Hubei based on daily case notification data', medRxiv .

Diao, Y., Liu, X., Wang, T., Zeng, X., Dong, C., Zhou, C., Zhang, Y., She, X., Liu, D. & Hu, Z. (2020), `Estimating the cure rate and case fatality rate of the ongoing epidemic COVID-19', medRxiv . https://www.medrxiv.org/content/ 10.1101/2020.02.26.20028189v1

Gieser, P. W., Chang, M. N., Rao, P., Shuster, J. J. & Pullen, J. (1998), `Modelling cure rates using the Gompertz model with covariate information', Statistics in Medicine 17(8), 831-839.

Gompertz, B. (1825), `On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS & c', Philosophical Transactions of the Royal Society of London 115, 513-583.

Hamdeni, T., Frederick, T., Asma, K. & Soufiane, G. (2024), `CRP, PCT, and D-dimer as Biomarkers for Disease Severity in COVID-19 Patients: A Retrospective Study in Kinshasa, Democratic Republic of Congo', Journal of Biostatistics and Epidemiology.

Hamdeni, T. & Gasmi, S. (2020), `The Marshall-Olkin generalized defective Gompertz distribution for surviving fraction modeling', Communications in Statistics-Simulation and Computation pp. 1-14.

Hamdeni, T. & Gasmi, S. (2022), `A proportional-hazards model for survival analysis and long-term survivors modeling: Application to amyotrophic lateral sclerosis data', Journal of Applied Statistics 49(3), 694-708.

Haybittle, J. (1959), `The estimation of the proportion of patients cured after treatment for cancer of the breast', The British Journal of Radiology 32(383), 725-733.

Johns Hopkins University (n.d.), `COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE)', https://github.com/CSSEGISandData/COVID-19. Accessed: June 2024.

Kim, S., Zeng, D., Li, Y. & Spiegelman, D. (2013), `Joint modeling of longitudinal and cure-survival data', Journal of statistical theory and practice 7(2), 324-344.

Kundu, S., Chauhan, K., Mandal, D. et al. (2021), `Survival Analysis of Patients With COVID-19 in India by Demographic Factors: Quantitative Study', JMIR Formative Research 5(5), e23251. https://formative.jmir.org/2021/5/e23251/

Lambert, P. C., Dickman, P. W., Weston, C. L. & Thompson, J. R. (2010), `Estimating the cure fraction in population-based cancer studies by using finite mixture models', Journal of the Royal Statistical Society: Series C (Applied Statistics) 59(1), 35-55.

Liu, X., Ahmad, Z., Gemeay, A. M., Abdulrahman, A. T., Hafez, E. H. & Khalil, N. (2021), `Modeling the survival times of the COVID-19 patients with a new statistical model: A case study from China', PLOS One 16(7), e0254999.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254999

Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. (2020), `Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China', Intensive Care Medicine pp. 1-3. https://link.springer.com/article/10.1007/s00134-020-05991-x

Sreedevi, E. P. & Sankaran, P. G. (2021), `Statistical methods for estimating cure fraction of COVID-19 patients in India', Model Assisted Statistics and Applications 16(1), 59-64. https://content.iospress.com/articles/model-assisted-statistics-and-applications/mas210508

World Bank (n.d.), `World Bank Open Data', https://data.worldbank.org. Accessed: June 2024.

Zhao, W., Yu, S., Zha, X., Wang, N., Pang, Q., Li, T. & Li, A. (2020),`Clinicalcharacteristics and durations of hospitalized patients with COVID-19 in Beijing:a retrospective cohort study', medRxiv . https://www.medrxiv.org/content/10.1101/2020.03.13.20035498v1

How to Cite

APA

Tasnime, H., Toumi Nasri, M., Tshibasu, F., Loukil, R. and Gasmi, S. (2025). Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights. Revista Colombiana de Estadística, 48(1), 195–213. https://doi.org/10.15446/rce.v48n1.115842

ACM

[1]
Tasnime, H., Toumi Nasri, M., Tshibasu, F., Loukil, R. and Gasmi, S. 2025. Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights. Revista Colombiana de Estadística. 48, 1 (Jan. 2025), 195–213. DOI:https://doi.org/10.15446/rce.v48n1.115842.

ACS

(1)
Tasnime, H.; Toumi Nasri, M.; Tshibasu, F.; Loukil, R.; Gasmi, S. Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights. Rev. colomb. estad. 2025, 48, 195-213.

ABNT

TASNIME, H.; TOUMI NASRI, M.; TSHIBASU, F.; LOUKIL, R.; GASMI, S. Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights. Revista Colombiana de Estadística, [S. l.], v. 48, n. 1, p. 195–213, 2025. DOI: 10.15446/rce.v48n1.115842. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/115842. Acesso em: 19 feb. 2025.

Chicago

Tasnime, Hamdeni, Mohamed Toumi Nasri, Frederick Tshibasu, Rihab Loukil, and Soufiane Gasmi. 2025. “Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights”. Revista Colombiana De Estadística 48 (1):195-213. https://doi.org/10.15446/rce.v48n1.115842.

Harvard

Tasnime, H., Toumi Nasri, M., Tshibasu, F., Loukil, R. and Gasmi, S. (2025) “Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights”, Revista Colombiana de Estadística, 48(1), pp. 195–213. doi: 10.15446/rce.v48n1.115842.

IEEE

[1]
H. Tasnime, M. Toumi Nasri, F. Tshibasu, R. Loukil, and S. Gasmi, “Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights”, Rev. colomb. estad., vol. 48, no. 1, pp. 195–213, Jan. 2025.

MLA

Tasnime, H., M. Toumi Nasri, F. Tshibasu, R. Loukil, and S. Gasmi. “Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights”. Revista Colombiana de Estadística, vol. 48, no. 1, Jan. 2025, pp. 195-13, doi:10.15446/rce.v48n1.115842.

Turabian

Tasnime, Hamdeni, Mohamed Toumi Nasri, Frederick Tshibasu, Rihab Loukil, and Soufiane Gasmi. “Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights”. Revista Colombiana de Estadística 48, no. 1 (January 21, 2025): 195–213. Accessed February 19, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/115842.

Vancouver

1.
Tasnime H, Toumi Nasri M, Tshibasu F, Loukil R, Gasmi S. Defective Survival Modeling and Cure Rate Analysis of COVID-19: A Cross-Location Comparative Study Using Parametric and Non-Parametric Approaches with Demographic Insights. Rev. colomb. estad. [Internet]. 2025 Jan. 21 [cited 2025 Feb. 19];48(1):195-213. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/115842

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

43

Downloads