Published

2025-07-01

E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data

Estimación e-bayesiana y h-bayesiana de la distribución de potencia inversa de Lomax bajo diferentes funciones de pérdida con una aplicación de datos clínicos

DOI:

https://doi.org/10.15446/rce.v48n2.116221

Keywords:

Bayesian estimation, e-bayesian estimation, h-bayesian estimation, inverse power lomax distribution, mean squared error. (en)
Distribución Lomax de potencia inversa, error cuadrático medio, estimación bayesiana, estimación e-bayesiana, estimación h-bayesiana. (es)

Downloads

Authors

  • Hemani Sharma University of Jammu
  • Subhankar Dutta Maulana Azad National Institute of Technology

In this paper, Expected Bayesian and Hierarchical Bayesian techniques have been discussed to estimate the shape parameter of the inverse power Lomax distribution. The proposed estimates for the shape parameter are obtained by using an informative gamma prior based on squared error, entropy and weighted balance loss functions. The definitions of the proposed estimators as well as their characteristics are provided. A Monte Carlo simulation is executed to compare the performance of the proposed estimators in terms of mean squared error. Finally a real life data set has been analyzed for further illustrations.

En este artículo, se analizan las técnicas bayesiana esperada y bayesiana jerárquica para estimar el parámetro de forma de la distribución Lomax de potencia inversa. Las estimaciones propuestas para el parámetro de forma se obtienen utilizando una distribución gamma previa informativa basada en el error cuadrático, la entropía y las funciones de pérdida de balance ponderadas. Se proporcionan las definiciones de los estimadores propuestos, así como sus características. Se ejecuta una simulación de Monte Carlo para comparar el rendimiento de los estimadores propuestos en términos de error cuadrático medio. Finalmente, se analiza un conjunto de datos reales para obtener más ejemplos.

References

Abdul-Sathar, E. I. & Athirakrishnan, R. B. (2021), 'E-bayesian and hierarchical estimation of inverse Rayleigh distribution', American Journal of Mathematical and Management Sciences 40(2), 163-176.

Basheer, A. M., Okasha, H., El-Baz, A. & Tarabia, A. (2021), 'E-bayesian and hierarchical estimation of inverse Weibull distribution', Annals of Data Science 8(3), 435-454. DOI: https://doi.org/10.1007/s40745-020-00320-x

Bjerkedal, T. (1960), 'Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli', American Journal of Epidemiology 72, 130-148. DOI: https://doi.org/10.1093/oxfordjournals.aje.a120129

Dey, D., Ghosh, M. & Srinivasan, C. (1987), 'Simultaneous estimation of parameters under entropy loss', Journal of Statistical Planning and Inference 15, 347-363. DOI: https://doi.org/10.1016/0378-3758(86)90108-4

Han, M. (1997), 'The structure of hierarchical prior distribution and its applications', Operations Research and Management Science 6(3), 31-40.

Han, M. (2009), 'E-bayesian estimation and hierarchical bayesian estimation of failure rate', Applied Mathematical Modelling 33(4), 1915-1922. DOI: https://doi.org/10.1016/j.apm.2008.03.019

Han, M. (2017), 'The e-bayesian and hierarchical bayesian estimations of Pareto distribution parameter under different loss functions', Journal of Statistical Computation and Simulation 87(3), 577-593. DOI: https://doi.org/10.1080/00949655.2016.1221408

Han, M. & Ding, Y. (2004), 'Synthesized expected bayesian method of parametric estimate', Journal of Systems Science and Systems Engineering 13(1), 98-111. DOI: https://doi.org/10.1007/s11518-006-0156-0

Harris, C. (1968), 'The Pareto distribution as a queue service discipline', Operations Research 16(2), 307-313. DOI: https://doi.org/10.1287/opre.16.2.307

Hassan, A. S. & Abd-Allah, M. (2019), 'On the inverse power Lomax distribution', Annals of Data Science 6, 259-278. DOI: https://doi.org/10.1007/s40745-018-0183-y

Jaheen, Z. F. & Okasha, H. M. (2011), 'E-bayesian estimation for the Burr type-XII model based on type-II censoring', Applied Mathematical Modelling 35(10), 4730-4737. DOI: https://doi.org/10.1016/j.apm.2011.03.055

Lindley, D. V. & Smith, A. F. M. (1972), 'Bayes estimates for the linear model', Journal of the Royal Statistical Society. Series B (Methodological) 34(1), 1-41. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00885.x

Nasir, W. & Aslam, M. (2015), 'Bayes approach to study shape parameter of Fréchet distribution', Journal of Basic and Applied Sciences 4(3), 246-254. DOI: https://doi.org/10.14419/ijbas.v4i3.4644

Rady, E. A., Hassanein, W. A. & Elhaddad, T. A. (2016), 'The power Lomax distribution with an application to bladder cancer data', SpringerPlus 5(1), 1838. DOI: https://doi.org/10.1186/s40064-016-3464-y

How to Cite

APA

Sharma, H. & Dutta, S. (2025). E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data. Revista Colombiana de Estadística, 48(2), 19–48. https://doi.org/10.15446/rce.v48n2.116221

ACM

[1]
Sharma, H. and Dutta, S. 2025. E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data. Revista Colombiana de Estadística. 48, 2 (Jul. 2025), 19–48. DOI:https://doi.org/10.15446/rce.v48n2.116221.

ACS

(1)
Sharma, H.; Dutta, S. E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data. Rev. colomb. estad. 2025, 48, 19-48.

ABNT

SHARMA, H.; DUTTA, S. E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data. Revista Colombiana de Estadística, [S. l.], v. 48, n. 2, p. 19–48, 2025. DOI: 10.15446/rce.v48n2.116221. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/116221. Acesso em: 13 nov. 2025.

Chicago

Sharma, Hemani, and Subhankar Dutta. 2025. “E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data”. Revista Colombiana De Estadística 48 (2):19-48. https://doi.org/10.15446/rce.v48n2.116221.

Harvard

Sharma, H. and Dutta, S. (2025) “E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data”, Revista Colombiana de Estadística, 48(2), pp. 19–48. doi: 10.15446/rce.v48n2.116221.

IEEE

[1]
H. Sharma and S. Dutta, “E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data”, Rev. colomb. estad., vol. 48, no. 2, pp. 19–48, Jul. 2025.

MLA

Sharma, H., and S. Dutta. “E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data”. Revista Colombiana de Estadística, vol. 48, no. 2, July 2025, pp. 19-48, doi:10.15446/rce.v48n2.116221.

Turabian

Sharma, Hemani, and Subhankar Dutta. “E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data”. Revista Colombiana de Estadística 48, no. 2 (July 8, 2025): 19–48. Accessed November 13, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/116221.

Vancouver

1.
Sharma H, Dutta S. E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data. Rev. colomb. estad. [Internet]. 2025 Jul. 8 [cited 2025 Nov. 13];48(2):19-48. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/116221

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

208

Downloads

Download data is not yet available.