Published
E-bayesian and H-bayesian Estimation of Inverse Power Lomax Distribution under Different Loss Functions with an Application of Clinical Data
Estimación e-bayesiana y h-bayesiana de la distribución de potencia inversa de Lomax bajo diferentes funciones de pérdida con una aplicación de datos clínicos
DOI:
https://doi.org/10.15446/rce.v48n2.116221Keywords:
Bayesian estimation, e-bayesian estimation, h-bayesian estimation, inverse power lomax distribution, mean squared error. (en)Distribución Lomax de potencia inversa, error cuadrático medio, estimación bayesiana, estimación e-bayesiana, estimación h-bayesiana. (es)
Downloads
In this paper, Expected Bayesian and Hierarchical Bayesian techniques have been discussed to estimate the shape parameter of the inverse power Lomax distribution. The proposed estimates for the shape parameter are obtained by using an informative gamma prior based on squared error, entropy and weighted balance loss functions. The definitions of the proposed estimators as well as their characteristics are provided. A Monte Carlo simulation is executed to compare the performance of the proposed estimators in terms of mean squared error. Finally a real life data set has been analyzed for further illustrations.
En este artículo, se analizan las técnicas bayesiana esperada y bayesiana jerárquica para estimar el parámetro de forma de la distribución Lomax de potencia inversa. Las estimaciones propuestas para el parámetro de forma se obtienen utilizando una distribución gamma previa informativa basada en el error cuadrático, la entropía y las funciones de pérdida de balance ponderadas. Se proporcionan las definiciones de los estimadores propuestos, así como sus características. Se ejecuta una simulación de Monte Carlo para comparar el rendimiento de los estimadores propuestos en términos de error cuadrático medio. Finalmente, se analiza un conjunto de datos reales para obtener más ejemplos.
References
Abdul-Sathar, E. I. & Athirakrishnan, R. B. (2021), 'E-bayesian and hierarchical estimation of inverse Rayleigh distribution', American Journal of Mathematical and Management Sciences 40(2), 163-176.
Basheer, A. M., Okasha, H., El-Baz, A. & Tarabia, A. (2021), 'E-bayesian and hierarchical estimation of inverse Weibull distribution', Annals of Data Science 8(3), 435-454. DOI: https://doi.org/10.1007/s40745-020-00320-x
Bjerkedal, T. (1960), 'Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli', American Journal of Epidemiology 72, 130-148. DOI: https://doi.org/10.1093/oxfordjournals.aje.a120129
Dey, D., Ghosh, M. & Srinivasan, C. (1987), 'Simultaneous estimation of parameters under entropy loss', Journal of Statistical Planning and Inference 15, 347-363. DOI: https://doi.org/10.1016/0378-3758(86)90108-4
Han, M. (1997), 'The structure of hierarchical prior distribution and its applications', Operations Research and Management Science 6(3), 31-40.
Han, M. (2009), 'E-bayesian estimation and hierarchical bayesian estimation of failure rate', Applied Mathematical Modelling 33(4), 1915-1922. DOI: https://doi.org/10.1016/j.apm.2008.03.019
Han, M. (2017), 'The e-bayesian and hierarchical bayesian estimations of Pareto distribution parameter under different loss functions', Journal of Statistical Computation and Simulation 87(3), 577-593. DOI: https://doi.org/10.1080/00949655.2016.1221408
Han, M. & Ding, Y. (2004), 'Synthesized expected bayesian method of parametric estimate', Journal of Systems Science and Systems Engineering 13(1), 98-111. DOI: https://doi.org/10.1007/s11518-006-0156-0
Harris, C. (1968), 'The Pareto distribution as a queue service discipline', Operations Research 16(2), 307-313. DOI: https://doi.org/10.1287/opre.16.2.307
Hassan, A. S. & Abd-Allah, M. (2019), 'On the inverse power Lomax distribution', Annals of Data Science 6, 259-278. DOI: https://doi.org/10.1007/s40745-018-0183-y
Jaheen, Z. F. & Okasha, H. M. (2011), 'E-bayesian estimation for the Burr type-XII model based on type-II censoring', Applied Mathematical Modelling 35(10), 4730-4737. DOI: https://doi.org/10.1016/j.apm.2011.03.055
Lindley, D. V. & Smith, A. F. M. (1972), 'Bayes estimates for the linear model', Journal of the Royal Statistical Society. Series B (Methodological) 34(1), 1-41. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00885.x
Nasir, W. & Aslam, M. (2015), 'Bayes approach to study shape parameter of Fréchet distribution', Journal of Basic and Applied Sciences 4(3), 246-254. DOI: https://doi.org/10.14419/ijbas.v4i3.4644
Rady, E. A., Hassanein, W. A. & Elhaddad, T. A. (2016), 'The power Lomax distribution with an application to bladder cancer data', SpringerPlus 5(1), 1838. DOI: https://doi.org/10.1186/s40064-016-3464-y
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






