Published
Estimation of Variances using the Generalized Variance Function: Labor and Population Indicators in the Colombian Household Survey 2022
Estimación de varianzas utilizando la función generalizada de varianza: indicadores laborales y de población en la encuesta de hogares de Colombia 2022
DOI:
https://doi.org/10.15446/rce.v48n2.117060Keywords:
Generalized variance function, Complex surveys, Variance estimation, Sampling error household survey (en)Función generalizada de varianza, Encuestas complejas, Estimación de la varianza, Error de muestreo, Encuesta de hogares. (es)
Downloads
This study addresses the challenge of estimating variances in household surveys, particularly when sampling design variables are absent in publicly available microdata. By implementing the Generalized Variance Function (GVF), Colombia's Household Survey for 2022 serves as a case study. GVF models were developed and validated using the standard errors published by the National Administrative Department of Statistics (DANE) of Colombia. These models demonstrated high accuracy and robustness for estimates across various levels of disaggregation and periodicities. Additionally, their validation with 2023 data confirmed their predictive capacity and applicability in similar contexts, underscoring their effectiveness as tools for evaluating the quality of estimates in complex surveys.
Este estudio aborda el desafío de estimar la varianza en encuestas de hogares, causado por la ausencia de variables del diseño muestral en los microdatos públicos. A través de la implementación de la Función Generalizada de Varianza (FGV), se utiliza como caso de estudio la Encuesta de Hogares de Colombia para 2022. Los modelos de FGV se desarrollaron y validaron con base en los errores estándar publicados por el Departamento Administrativo Nacional de Estadística (DANE) de Colombia. Estos modelos demostraron alta precisión y robustez en estimaciones a diferentes niveles de desagregación y periodicidades. Asimismo, su validación con datos de 2023 confirmó su capacidad predictiva y aplicabilidad en contextos similares, destacando su eficacia como herramienta para evaluar la calidad de las estimaciones en encuestas complejas.
References
Alegria, J. & Scott, T. C. (1991), Generalized variance function applications in forestry, Vol. 345, US Department of Agriculture, Forest Service, Northeastern Forest Experiment. DOI: https://doi.org/10.5962/bhl.title.68829
Carter, G. & Rolph, J. (1974), 'Empirical bayes methods applied to estimating fire alarm probabilities', Journal of the American Statistical Association 69, 880-885. DOI: https://doi.org/10.1080/01621459.1974.10480222
DANE (2024a), 'Mercado laboral (empleo y desempleo) históricos', https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo/geih-historicos. Last accessed 25 Jun 2025.
DANE (2024b), 'Población fuera de la fuerza laboral', https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/poblacion-fuera-de-la-fuerza-laboral. Last accessed 25 Jun 2025.
Fay, R. E. & Herriot, R. A. (1979), 'Estimates of income for small places: an application of james-stein procedures to census data', Journal of the American Statistical Association 74(366a), 269-277. DOI: https://doi.org/10.1080/01621459.1979.10482505
Fúquene-Patiño, J., Cristancho, C., Ospina, M. & Morales Gonzalez, D. (2021), 'Fay-herriot model-based prediction alternatives for estimating households with emigrated members', Journal of Official Statistics 37(3), 771-789. https://doi.org/10.2478/jos-2021-0034 DOI: https://doi.org/10.2478/jos-2021-0034
Gutiérrez, A. & Babativa-Márquez, G. (2023), Efectos de diseño para indicadores sociales en américa latina: función generalizada de varianza para estimadores directos provenientes de encuestas de hogares, Serie de la CEPAL 67980, Comisión Económica para América Latina y el Caribe (CEPAL).
Gutiérrez, A., Fuentes, A., Mancero, X., López, F. & Molina, F. (2020), Criterios de calidad en la estimación de indicadores a partir de encuestas de hogares: una aplicación a la migración internacional, Technical report 101, Comisión Económica para América Latina y el Caribe (CEPAL), Santiago, Chile. https://repositorio.cepal.org/handle/11362/45681
Handayani, A. & Aunuddin, I. (2005), Generalized variance functions for binomial variables in strati ed two-stage sampling, in 'Forum Statistika dan Komputasi', Indonesia, pp. 1-8.
Johnson, E. G. & King, B. F. (1987), Generalized variance functions for a complex sample survey, Research Report RR-87-06, Educational Testing Service. https://doi.org/10.1002/j.2330-8516.1987.tb00210.x DOI: https://doi.org/10.1002/j.2330-8516.1987.tb00210.x
Krenzke, T. (1995), Reevaluating generalized variance model parameters for the national crime victimization survey, in 'Proceedings of the Section on Survey Research Methods, American Statistical Association', Alexandria, VA, USA, pp. 327-332. Published in the ASA 1995 conference proceedings.
Kubacki, J. & J¦drzejczak, A. (2011), The comparison of generalized variance function with other methods of precision estimation for polish household budget survey, in 'Proceedings of the 7th Conference Survey Sampling in Economic and Social Research ', University of Economics in Katowice, Katowice, Poland, pp. 58-69.
Lohr, S. L. (2021), Sampling, Chapman and Hall/CRC.
McIllece, J. (2018), 'On generalized variance functions for sample means and medians. jsm 2018-survey research methods section, 584-594'.
MinSalud (2024), 'De niciones del mercado laboral', https://www.minsalud.gov.co/trabajoEmpleo/Paginas/definiciones.aspx. Last accessed 25 Jun 2025.
Morales, D., Dolores Esteban, M., Pérez, A. & Hobza, T. (2021), A Course on Small Area Estimation and Mixed Models: Methods, Theory and Applications in R, Statistics for Social and Behavioral Sciences, Springer. DOI: https://doi.org/10.1007/978-3-030-63757-6
Salvucci, S., Weng, S. & Holt, A. (1995), Design Effects and Generalized Variance Functions for the 1990-91 Schools and Sta ng Survey (SASS): User's Manual, Vol. 1 of NCES Technical Report Series, U.S. Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics, Washington, DC. https://nces.ed.gov/pubs95/95342.pdf
Valliant, R. (1987), 'Generalized variance functions in stratified two-stage sampling', Journal of the American Statistical Association 82(398), 499-508. DOI: https://doi.org/10.1080/01621459.1987.10478454
Wolter, K. (2007), Introduction to Variance Estimation: Statistics for Social Science and Behavorial Sciences, Springer.
Zhang, G., Cheng, Y. & Lu, Y. (2019), 'Generalised variance functions for longitudinal survey data', Statistical Theory and Related Fields 3(2), 150-157. DOI: https://doi.org/10.1080/24754269.2019.1664372
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






