Published

2025-12-01

On the Convergence of Expansions for the Exponentiated Transmuted-G Family

Sobre la convergencia de las expansiones en serie para la familia de distribuciones G-transmutada exponenciada

DOI:

https://doi.org/10.15446/rce.v48n3.123209

Keywords:

Exponentiated transmuted-G family, Moments, Power series expansions, Weibull distribution (en)
Distribución de Weibull, Expansiones en series de potencias, Familia G-transmutada exponenciada, Momentos (es)

Downloads

Authors

  • Fernando A. Peña Ramírez Universidade Federal de Santa Maria https://orcid.org/0000-0001-6763-5877
  • Renata R. Guerra Universidade Federal de Santa Maria
  • Alexsandro A. Ferreira Universidade Federal de Santa Maria
  • Gauss M. Cordeiro Universidade Federal de Pernambuco

The exponentiated transmuted-G family was introduced along with some of its statistical properties derived from a power series expansion. This work demonstrates that the previously proposed expansions, which depend on a double sum, present convergence problems for some combinations of parameters. Therefore, a much simpler linear representation that depends only on a single sum is presented, allowing for the precise and general calculation of these properties.

La familia de distribuciones G-transmutada exponenciada fue introducida junto con algunas de sus propiedades estadísticas derivadas de una expansión en series de potencias. Este trabajo demuestra que las expansiones previamente propuestas, que dependen de una suma doble, presentan problemas de convergencia para algunas combinaciones de parámetros. Por lo tanto, se presenta una representación lineal mucho más simple, que depende solo de una suma simple, lo que permite el cálculo preciso y general de estas propiedades.

References

Abbas, S., Mohsin, M. & Pilz, J. (2021), `A new lifetime distribution with applications in reliability and environmental sciences', Journal of Statistics and Management Systems 24(3), 453-479.

Alrweili, H. (2025), `Statistical inference and data analysis of the record-based transmuted burr x model', Open Mathematics 23(1), 20240121.

Aryal, G. R. & Tsokos, C. P. (2011), `Transmuted weibull distribution: A generalization of theweibull probability distribution', European Journal of pure and applied mathematics 4(2), 89-102.

Bashiru, S. O., Kayid, M., Sayed, R., Balogun, O. S., Hammad, A. & Abd ElRaouf, M. (2025), `Transmuted inverse unit teissier distribution: Properties, estimations and applications to medical and radiation sciences', Journal of Radiation Research and Applied Sciences 18(1), 101208.

Cogo, C. C., de Andrade, T. A. N. & Bisognin, C. (2024), `New unconditional and quantile regression model erf-Weibull: An alternative to gamma, Gumbel and exponentiated exponential distributions', Revista Colombiana de Estadística 47(1). https://revistas.unal.edu.co/index.php/estad/article/view/110213

Cordeiro, G. M. & de Castro, M. (2011), `A new family of generalized distributions', Journal of Statistical Computation and Simulation 81, 883-898.

Debastiani Neto, J., Puziol de Oliveira, R., Antonio Moala, F. & Alberto Achcar, J. (2025), `Introducing the discrete xlindley distribution: A one-parameter model for overdispersed data', Colombian Journal of Statistics/Revista Colombiana de Estadística 48(1).

Dey, S., Raheem, E. & Mukherjee, S. (2017), `Statistical properties and different methods of estimation of transmuted rayleigh distribution', Revista Colombiana de Estadística 40(1), 165-203.

Eugene, N., Lee, C. & Famoye, F. (2002), `Beta-normal distribution and its applications', Communications in Statistics - Theory and Methods 31, 497-512.

Eze, N. M. & Yahya, W. B. (2025), `Bayesian and non-bayesian reliability analysis with a new member of transmuted exponential-g family of distribution', Journal of Statistical Computation and Simulation pp. 1-44.

Ferreira, A. A. & Cordeiro, G. M. (2024), `The flexible generalized gamma distribution with applications to COVID-19 data', Revista Colombiana de Estadística 47(2), 453-473.

Gupta, R. C., Gupta, P. L. & Gupta, R. D. (1998), `Modeling failure time data by lehman alternatives', Commun. Stat. Theory Methods 27(4), 887-904.

Khan, M. S. & King, R. (2013), `Transmuted modi ed weibull distribution: A generalization of the modifed weibull probability distribution', European Journal of pure and applied mathematics 6(1), 66-88.

Lehmann, E. L. (1953), `The power of rank tests', Annals of Mathematical Statistics 24, 23-43.

Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M. & Nadarajah, S. (2019), `Adequacy Model: An R package for probability distributions and general purpose optimization', PLoS One 14(8).

Merovci, F., Alizadeh, M., Yousof, H. M. & Hamedani, G. G. (2017), `The exponentiated transmuted-G family of distributions: Theory and applications', Commun. Stat. Theory Methods 46(21), 10800-10822.

Mota, A. L., Ramos, P. L., Ferreira, P. H., Tomazella, V. L. & Louzada, F. (2021), `A reparameterized weighted lindley distribution: properties, estimation and applications', Revista Colombiana de Estadística 44(1), 65-90.

Okereke, E. W. (2019), `Exponentiated transmuted lindley distribution with applications', Open J. Math. Anal. 3(2), 1-18.

Peña-Ramírez, F. A., Guerra, R. R., Canterle, D. R. & Cordeiro, G. M. (2020), `The logistic Nadarajah-haghighi distribution and its associated regression model for reliability applications', Reliability Engineering & System Safety 204, 107196.

Shahzad, M. N., Merovci, F. & Asghar, Z. (2017), `Transmuted Singh-Maddala distribution: A new flexible and upside-down bathtub shaped hazard function distribution', Revista Colombiana de Estadística 40, 1-27.

Shaw, W. T. & Buckley, I. R. C. (2007), `The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map', arXiv preprint arXiv:0901.0434.

How to Cite

APA

Peña Ramírez, F. A., Guerra, R. R., Ferreira, A. A. & Cordeiro, G. M. (2025). On the Convergence of Expansions for the Exponentiated Transmuted-G Family. Revista Colombiana de Estadística, 48(3), 573–587. https://doi.org/10.15446/rce.v48n3.123209

ACM

[1]
Peña Ramírez, F.A., Guerra, R.R., Ferreira, A.A. and Cordeiro, G.M. 2025. On the Convergence of Expansions for the Exponentiated Transmuted-G Family. Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 573–587. DOI:https://doi.org/10.15446/rce.v48n3.123209.

ACS

(1)
Peña Ramírez, F. A.; Guerra, R. R.; Ferreira, A. A.; Cordeiro, G. M. On the Convergence of Expansions for the Exponentiated Transmuted-G Family. Rev. colomb. estad. 2025, 48, 573-587.

ABNT

PEÑA RAMÍREZ, F. A.; GUERRA, R. R.; FERREIRA, A. A.; CORDEIRO, G. M. On the Convergence of Expansions for the Exponentiated Transmuted-G Family. Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 573–587, 2025. DOI: 10.15446/rce.v48n3.123209. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/123209. Acesso em: 24 dec. 2025.

Chicago

Peña Ramírez, Fernando A., Renata R. Guerra, Alexsandro A. Ferreira, and Gauss M. Cordeiro. 2025. “On the Convergence of Expansions for the Exponentiated Transmuted-G Family”. Revista Colombiana De Estadística 48 (3):573-87. https://doi.org/10.15446/rce.v48n3.123209.

Harvard

Peña Ramírez, F. A., Guerra, R. R., Ferreira, A. A. and Cordeiro, G. M. (2025) “On the Convergence of Expansions for the Exponentiated Transmuted-G Family”, Revista Colombiana de Estadística, 48(3), pp. 573–587. doi: 10.15446/rce.v48n3.123209.

IEEE

[1]
F. A. Peña Ramírez, R. R. Guerra, A. A. Ferreira, and G. M. Cordeiro, “On the Convergence of Expansions for the Exponentiated Transmuted-G Family”, Rev. colomb. estad., vol. 48, no. 3, pp. 573–587, Dec. 2025.

MLA

Peña Ramírez, F. A., R. R. Guerra, A. A. Ferreira, and G. M. Cordeiro. “On the Convergence of Expansions for the Exponentiated Transmuted-G Family”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 573-87, doi:10.15446/rce.v48n3.123209.

Turabian

Peña Ramírez, Fernando A., Renata R. Guerra, Alexsandro A. Ferreira, and Gauss M. Cordeiro. “On the Convergence of Expansions for the Exponentiated Transmuted-G Family”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 573–587. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/123209.

Vancouver

1.
Peña Ramírez FA, Guerra RR, Ferreira AA, Cordeiro GM. On the Convergence of Expansions for the Exponentiated Transmuted-G Family. Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):573-87. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/123209

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

14

Downloads

Download data is not yet available.