Published
EL MOVIMIENTO BROWNIANO FRACCIONAL COMO LÍMITE DE CIERTOS TIPOS DE PROCESOS ESTOCÁSTICOS
THE BROWNIAN FRACTIONAL MOTION AS A LIMIT OF SOME TYPES OF
Keywords:
Convergencia débil, proceso gausiano, proceso de Poisson, movimiento browniano fraccional, caminata aleatoria (es)Weak Convergence, Gaussian Process, Poisson Process, Fractional Brownian Motion, Random Walk (en)
Downloads
1Estudiante. Maestría en Matemáticas. Universidad Nacional de Colombia, Sede Bogotá. E-
mail: andrea.cavanzo@gmail.com
2 Profesora. Departamento de Estadística. Universidad Nacional de Colombia, Sede Bogotá.
E-mail: lblancoc@unal.edu.co
Se hace un estudio detallado de algunas construcciones significativas del movimiento browniano fraccional (mBf) desarrolladas recientemente: la de Taqqu (1975), quien construye el mBf como un límite de sumas parciales nor malizadas de variables aleatorias estacionarias, la de Sottinen (2003), quien utiliza una interpolación de variables aleatorias y la realizada por Delgado & Jolis (2000) quienes aproximan las distribuciones finito dimensionales del mBf a partir de las de procesos continuos definidos por medio de un proceso de Poisson.
Palabras Clave: Convergencia débil, proceso gausiano, proceso de Poisson, movimiento browniano fraccional, caminata aleatoria.
Some of the most significant constructions of the fractional brownian mo tion developed recently are reviewed in detail. Taqqu works with the limit under weak convergence of normalized partial sums of stationary random variables exhibiting long run non-periodic dependence. Sottinen proves a Donsker type approximation theorem and Delgado & Jolis prove that the fractional brownian motion can be weakly approximated by the law of some processes constructed from standard Poisson process.
Keywords: Weak Convergence, Gaussian Process, Poisson Process, Frac- tional Brownian Motion, Random Walk.
Texto completo disponible en PDF
Referencias
1. Billingsley, P. (1968), Convergence of Probability Measures, John Wiley & Sons, New York.
2. Cavanzo, A. (2004), "El movimiento browniano fraccional como límite de ciertos tipos de procesos estocásticos".
3. Decreusefond, L. & Üstünel, A. (1958), Fractional brownian motion: Theory and applications. http://www.emath.fr/proc/vol5/.
4. Delgado, R. & Jolis, M. (2000), "Weak approximation for a class of gaussian process", Applied Probability 37(2), 400- 407.
5. Embrechts, P. & Maejima, M. (2002), Selfsimilar Stochastic Processes, Princeton University Press.
6. Feller,W. (1951), "The asymptotic distribution of the range of sums of independent random variables", Ann. Math. Stat. 22, 427- 432.
7. Feller, W. (1971), An Introduction to Probability Theory and its Applications 2, John Willey & Sons, New York.
8. Lamperti, J. (1962), "Semi-stable stochastic processes", Amer. Math. Soc. Trans. 104, 62- 78.
9. Lin, S. (1995), "Stochastic analysis of fractional brownian motion", Stochastic and Stochastic Reports 55(1-2), 121- 140.
10. Mandelbrot, B. & Ness, J. V. (1968), "Fractional brownian motion, fraccional noises and applications", SIAM Review 10(4), 422- 437.
11. Nualart, D. (2003), Stochastic integration with respect to fractional brownian motion an applications. Preprint.
12. Sottinen, T. (2001), "Fractional brownian motion, random walks and binary market models", Finance and Stochastic 5(3), 343- 355.
13. Sottinen, T. (2003), Fractional brownian motion in finance and queueing, Technical report, Academic Dissertation, Department of Mathematics, Faculty of Science University of Helsinki.
14. Stroock, D. (1982), Topics in Stochastic Differential Equations, Tata Institute of Fundamental Research & Springer Verlag, Berlín.
15. Taqqu, M. (1975), "Weak convergence to fractional brownian motion and to the Rosenblatt process", Z. Wahrsch. Verwandte Gebiete 31, 287- 302.
16. Vervaat, W. (1985), "Sample path properties of self-similar processes with stationary increments", Annals of Probability 13, 1- 27.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).