Published
The Distribution of a Linear Combination of Two Correlated Chi-Square Variables
Distribución de una combinación lineal de dos variables chi-cuadrado correlacionadas
Keywords:
Bivariate Chi-square Distribution, Correlated Chi-square Vari-ables, Linear Combination, Characteristic Function, Cumulative Distribution, Moments. (en)combinación lineal, distribución acumulada, distribución chi cuadrado bivariada, función característica, momentos, variables chi cuadrado correlacionadas (es)
Downloads
The distribution of the linear combination of two chi-square variables is known if the variables are independent. In this paper, we derive the distribution of positive linear combination of two chi-square variables when they are correlated through a bivariate chi-square distribution. Some properties of the distribution, namely, the characteristic function, cumulative distribution function, raw moments, mean centered moments, coefficients of skewness and kurtosis are derived. Results match with the independent case when the variables are uncorrelated. The graph of the density function is presented.
La distribución de una combinación lineal de dos variables chi cuadrado es conocida si las variables son independientes. En este artículo, se deriva la distribución de una combinación lineal positiva de dos variables chi cuadrado cuando estas están correlacionadas a través de una distribución chi cuadrado bivariada. Algunas propiedades de esta distribución como la función característica, la función de distribución acumulada, sus momentos, momentos centrados alrededor de la media, los coeficientes de sesgo y curtosis son derivados. Los resultados coinciden con el caso independiente cuando las variables son no correlacionadas. La gráfica de la función de densidad es también presentada.
1King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran, Saudi Arabia. Professor. Email: anwarj@kfupm.edu.sa
2King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran, Saudi Arabia. Associate professor. Email: omarmh@kfupm.edu.sa
3Bowling Green State University, Department of Mathematics and Statistics, Ohio, United States of America. Professor. Email: gupta@bgsu.edu
The distribution of the linear combination of two chi-square variables is known if the variables are independent. In this paper, we derive the distribution of positive linear combination of two chi-square variables when they are correlated through a bivariate chi-square distribution. Some properties of the distribution, namely, the characteristic function, cumulative distribution function, raw moments, mean centered moments, coefficients of skewness and kurtosis are derived. Results match with the independent case when the variables are uncorrelated. The graph of the density function is presented.
Key words: Bivariate Chi-square Distribution, CorrelatedChi-square Variables, Linear Combination, Characteristic Function, Cumulative Distribution, Moments.
La distribución de una combinación lineal de dos variables chi cuadrado es conocida si las variables son independientes. En este artículo, se deriva la distribución de una combinación lineal positiva de dos variables chi cuadrado cuando estas están correlacionadas a través de una distribución chi cuadrado bivariada. Algunas propiedades de esta distribución como la función característica, la función de distribución acumulada, sus momentos, momentos centrados alrededor de la media, los coeficientes de sesgo y curtosis son derivados. Los resultados coinciden con el caso independiente cuando las variables son no correlacionadas. La gráfica de la función de densidad es también presentada.
Palabras clave: combinación lineal, distribución acumulada, distribución chi cuadrado bivariada, función característica, momentos, variables chi cuadrado correlacionadas.
Texto completo disponible en PDF
References
1. Ahmed, S. (1992), 'Large sample pooling procedure for correlation', The Statistician 41, 415-428.
2. Bausch, J. (2012), On the efficient calculation of a linear combination of chi-square variables with an application in counting string vacua. arXiv:1208.2691.
3. Chen, S. & Hsu, N. (1995), 'The asymptotic distribution of the process capability index C_pmk', Communications in Statistics - Theory and Methods 24, 1279-1291.
4. Davies, R. (1980), 'Algorithm as 155. The distribution of a linear combination of \chi^2 random variables', Applied Statistics 29, 332-339.
5. Farebrother, R. (1984), 'Algorithm AS 204. The distribution of a positive linear combination of \chi^2 random variables', Applied Statistics 33, 332-339.
6. Glynn, P. & Inglehart, D. (1989), 'The optimal linear combination of control variates in the presence of asymptotically negligible bias', Naval Research Logistics Quarterly 36, 683-692.
7. Gordon, N. & Ramig, P. (1983), 'Cumulative distribution function of the sum of correlated chi-squared random variables', Journal of Statistical Computation and Simulation 17(1), 1-9.
8. Gradshteyn, I. & Ryzhik, I. (1994), Table of Integrals, Series and Products, Academic Press.
9. Gunst, R. & Webster, J. (1973), 'Density functions of the bivariate chi-square distribution', Journal of Statistical Computation and Simulation 2, 275-288.
10. Joarder, A. (2009), 'Moments of the product and ratio of two correlated chi-square random variables', Statistical Papers 50(3), 581-592.
11. Joarder, A., Laradji, A., , & Omar, M. (2012), 'On some characteristics of bivariate chi-square distribution', Statistics 46(5), 577-586.
12. Joarder, A. & Omar, M. (2013), 'Exact distribution of the sum of two correlated chi-square variables and its application', Kuwait Journal of Science and Engineering 40(2), 60-81.
13. Johnson, N., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 1, Wiley.
14. Krishnaiah, P., Hagis, P. & Steinberg, L. (1963), 'A note on the bivariate chi distribution', SIAM Review 5, 140-144.
15. Omar, M. & Joarder, A. (2010), Some properties of bivariate chi-square distribution and their application, Technical Report 414, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Saudi Arabia.
16. Provost, S. (1988), 'The exact density of a general linear combination of gamma variables', Metron 46, 61-69.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv36n2a02,
AUTHOR = {Joarder, Anwar H. and Omar, M. Hafidz and Gupta, Arjun K.},
TITLE = {{The Distribution of a Linear Combination ofTwo Correlated Chi-Square Variables}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2013},
volume = {36},
number = {2},
pages = {209-219}
}
References
Ahmed, S. (1992), ‘Large sample pooling procedure for correlation’, The Statistician 41, 415–428.
Bausch, J. (2012), On the efficient calculation of a linear combination of chi-square variables with an application in counting string vacua. arXiv:1208.2691.
Chen, S. & Hsu, N. (1995), ‘The asymptotic distribution of the process capability index cpmk’, Communications in Statistics - Theory and Methods 24, 1279–1291.
Davies, R. (1980), ‘Algorithm as 155. The distribution of a linear combination of ¬2 random variables’, Applied Statistics 29, 332–339.
Farebrother, R. (1984), ‘Algorithm AS 204. The distribution of a positive linear combination of ¬2 random variables’, Applied Statistics 33, 332–339.
Glynn, P. & Inglehart, D. (1989), ‘The optimal linear combination of control variates in the presence of asymptotically negligible bias’, Naval Research Logistics Quarterly 36, 683–692.
Gordon, N. & Ramig, P. (1983), ‘Cumulative distribution function of the sum of correlated chi-squared random variables’, Journal of Statistical Computation and Simulation 17(1), 1–9.
Gradshteyn, I. & Ryzhik, I. (1994), Table of Integrals, Series and Products, Academic Press.
Gunst, R. & Webster, J. (1973), ‘Density functions of the bivariate chi-square distribution’, Journal of Statistical Computation and Simulation 2, 275–288.
Joarder, A. (2009), ‘Moments of the product and ratio of two correlated chi-square random variables’, Statistical Papers 50(3), 581–592.
Joarder, A., Laradji, A., & Omar, M. (2012), ‘On some characteristics of bivariate chi-square distribution’, Statistics 46(5), 577–586.
Joarder, A. & Omar, M. (2013), ‘Exact distribution of the sum of two correlated chi-square variables and its application’, Kuwait Journal of Science and Engineering 40(2), 60–81.
Johnson, N., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 1, Wiley.
Krishnaiah, P., Hagis, P. & Steinberg, L. (1963), ‘A note on the bivariate chi distribution’, SIAM Review 5, 140–144.
Omar, M. & Joarder, A. (2010), Some properties of bivariate chi-square distribution and their application, Technical Report 414, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Saudi Arabia.
Provost, S. (1988), ‘The exact density of a general linear combination of gamma variables’, Metron 46, 61–69.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2013 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).