Published
Estimación de las componentes de varianza en modelos lineales mixtos con estructura de bloques ortogonal conmutativa
Estimation of Variance Components in Linear Mixed Models with Commutative Orthogonal Block Structure
Keywords:
álgebra conmutativa Jordan, componentes de varianza, modelo mixto (es)Commutative Jordan algebra, Mixed model, Variance components. (en)
Downloads
La segregación y el emparejamiento son técnicas para estimar las componentes de varianza en modelos mixtos. Una pregunta que ha surgido es si la segregación puede ser aplicada en situaciones en las que el emparejamiento no es aplicable. Nuestra motivación para esta investigación se basa en el hecho de que se quiere una respuesta a esta pregunta y se quiere explorar esta importante clase de modelos con el fin de contribuir al desarrollo de los modelos mixtos. Esto es posible utilizando la estructura algebraica de los modelos mixtos con estructura de bloques ortogonal conmutativa. Se presentan dos ejemplos que muestran que la segregación puede ser aplicada en situaciones donde el emparejamiento no es aplicable.
1University of Beira Interior, Faculty of Sciences, Department of Mathematics and Center of Mathematics, Covilhã, Portugal. Professor. Email: sandraf@ubi.pt
2University of Beira Interior, Faculty of Sciences, Department of Mathematics and Center of Mathematics, Covilhã, Portugal. Professor. Email: dario@ubi.pt
3University of Beira Interior, Faculty of Sciences, Department of Mathematics and Center of Mathematics, Covilhã, Portugal. Professor. Email: celian@ubi.pt
4New University of Lisbon, Faculty of Science and Technology, Department of Mathematics and Center of Mathematics and Its Applications, Covilhã, Portugal. Professor. Email: jtm@fct.unl.pt
Segregation and matching are techniques to estimate variance components in mixed models. A question arising is whether segregation can be applied in situations where matching does not apply. Our motivation for this research relies on the fact that we want an answer to that question and to explore this important class of models that can contribute to the development of mixed models. That is possible using the algebraic structure of mixed models. We present two examples showing that segregation can be applied in situations where matching does not apply.
Key words: Commutative Jordan algebra, Mixed model, Variance components.
La segregación y el emparejamiento son técnicas para estimar las componentes de varianza en modelos mixtos. Una pregunta que ha surgido es si la segregación puede ser aplicada en situaciones en las que el emparejamiento no es aplicable. Nuestra motivación para esta investigación se basa en el hecho de que se quiere una respuesta a esta pregunta y se quiere explorar esta importante clase de modelos con el fin de contribuir al desarrollo de los modelos mixtos. Esto es posible utilizando la estructura algebraica de los modelos mixtos con estructura de bloques ortogonal conmutativa. Se presentan dos ejemplos que muestran que la segregación puede ser aplicada en situaciones donde el emparejamiento no es aplicable.
Palabras clave: álgebra conmutativa Jordan, componentes de varianza, modelo mixto.
Texto completo disponible en PDF
References
1. Bailey, R. A. (2004), Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, Cambridge.
2. Cali'nski, T. & Kageyama, S. (2000), Block Designs: A Randomization Approach Vol. I: Analysis, Springer-Verlag, New York.
3. Cali'nski, T. & Kageyama, S. (2003), Block Designs: A Randomization Approach Vol. II: Analysis, Springer-Verlag, New York.
4. Cox, D. & Solomon, P. (2003), Components of Variance, Chapman and Hall, New York.
5. Fernandes, C., Mexia, J., Ramos, P. & Carvalho, F. (2011), 'Models with stair nesting', AIP Conference Proceedings - Numerical Analysis and Applied Mathematics 1389, 1627-1630.
6. Fernandes, C., Ramos, P. & Mexia, J. (2010), 'Algebraic structure of step nesting designs', Discussiones Mathematicae. Probability and Statistics 30, 221-235.
7. Ferreira, S. S., Ferreira, D. & Mexia, J. T. (2007), 'Cross additivity in balanced cross nesting models', Journal of Statistical Theory and Practice(3), 377-392.
8. Ferreira, S. S., Ferreira, D., Nunes, C. & Mexia, J. T. (2010), 'Nesting segregated mixed models', Journal of Statistical Theory and Practice 4(2), 233-242.
9. Fonseca, M., Mexia, J. T. & Zmy'slony, R. (2003), 'Estimators and tests for variance components in cross nested orthogonal models', Discussiones Mathematicae - Probability and Statistics 23(3), 175-201.
10. Fonseca, M., Mexia, J. T. & Zmy'slony, R. (2007), 'Jordan algebras generating pivot variables and orthogonal normal models', Journal of Interdisciplinary Mathematics(10), 305-326.
11. Fonseca, M., Mexia, J. T. & Zmy'slony, R. (2008), 'Inference in normal models with commutative orthogonal block structure', Acta et Commentationes Universitatis Tartuensis de Mathematica(12), 3-16.
12. Houtman, A. & Speed, T. (1983), 'Balance in designed experiments with orthogonal block structure', Annals of Statistics 11(4), 1069-1085.
13. Mejza, S. (1992), 'On some aspects of general balance in designed experiments', Statistica 52, 263-278.
14. Mexia, J. T., Vaquinhas, R., Fonseca, M. & Zmyslony, R. (2010), 'COBS: Segregation, Matching, Crossing and Nesting', Latest Trends on Applied Mathematics, Simulation, Modeling, 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM'10), 249-255.
15. Nelder, J. (1965a), 'The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance', Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 273(1393), 163-178.
16. Nelder, J. (1965b), 'The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance', Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 283(1393), 147-162.
17. Seely, J. (1971), 'Quadratic subspaces and completeness', The Annals of Mathematical Statistics 42, 710-721.
18. Zmy'slony, R. (1978), 'A characterization of best linear unbiased estimators in the general linear model', Mathematical Statistics and Probability Theory 2, 365-373.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv36n2a05,
AUTHOR = {Ferreira, Sandra S. and Ferreira, Dário and Nunes, Célia and T. Mexia, João},
TITLE = {{Estimation of Variance Components in Linear Mixed Models with Commutative Orthogonal Block Structure}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2013},
volume = {36},
number = {2},
pages = {259-269}
}
References
Bailey, R. A. (2004), Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, Cambridge.
Calinski, T. & Kageyama, S. (2000), Block Designs: A Randomization Approach Vol. I: Analysis, Springer-Verlag, New York.
Calinski, T. & Kageyama, S. (2003), Block Designs: A Randomization Approach Vol. II: Analysis, Springer-Verlag, New York.
Cox, D. & Solomon, P. (2003), Components of Variance, Chapman and Hall, New York.
Fernandes, C., Mexia, J., Ramos, P. & Carvalho, F. (2011), ‘Models with stair nesting’, AIP Conference Proceedings - Numerical Analysis and Applied Mathematics 1389, 1627–1630.
Fernandes, C., Ramos, P. & Mexia, J. (2010), ‘Algebraic structure of step nesting designs’, Discussiones Mathematicae. Probability and Statistics 30, 221–235.
Ferreira, S. S., Ferreira, D. & Mexia, J. T. (2007), ‘Cross additivity in balanced cross nesting models’, Journal of Statistical Theory and Practice (3), 377–392.
Ferreira, S. S., Ferreira, D., Nunes, C. & Mexia, J. T. (2010), ‘Nesting segregated mixed models’, Journal of Statistical Theory and Practice 4(2), 233–242.
Fonseca, M., Mexia, J. T. & Zmyslony, R. (2003), ‘Estimators and tests for variance components in cross nested orthogonal models’, Discussiones Mathematicae - Probability and Statistics 23(3), 175–201.
Fonseca, M., Mexia, J. T. & Zmyslony, R. (2007), ‘Jordan algebras generating pivot variables and orthogonal normal models’, Journal of Interdisciplinary Mathematics (10), 305–326.
Fonseca, M., Mexia, J. T. & Zmyslony, R. (2008), ‘Inference in normal models with commutative orthogonal block structure’, Acta et Commentationes Universitatis Tartuensis de Mathematica (12), 3–16.
Houtman, A. & Speed, T. (1983), ‘Balance in designed experiments with ortogonal block structure’, Annals of Statistics 11(4), 1069–1085.
Mejza, S. (1992), ‘On some aspects of general balance in designed experiments’, Statistica 52, 263–278.
Mexia, J. T., Vaquinhas, R., Fonseca, M. & Zmyslony, R. (2010), ‘COBS: Segregation, Matching, Crossing and Nesting’, Latest Trends on Applied Mathematics, Simulation, Modeling, 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM’10) pp. 249–255.
Nelder, J. (1965a), ‘The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 283(1393), 147–162.
Nelder, J. (1965b), ‘The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 273(1393), 163–178.
Seely, J. (1971), ‘Quadratic subspaces and completeness’, The Annals of Mathematical Statistics 42, 710–721.
Zmyslony, R. (1978), ‘A characterization of best linear unbiased estimators in the general linear model’, Mathematical Statistics and Probability Theory 2, 365–373.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2013 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).