Published
A New Difference-Cum-Exponential Type Estimator of Finite Population Mean in Simple Random Sampling
Un nuevo estimador tipo diferencia-cum-exponencial de la media de una población finita en muestras aleatorias simple
DOI:
https://doi.org/10.15446/rce.v37n1.44366Keywords:
Ratio estimator, Auxiliary Variable, Exponential type estimator, Bias, MSE, Efficiency. (en)estimador de razón, variables auxiliares, estimador tipo exponencial, sesgo, error cuadrático medio (es)
Downloads
Auxiliary information is frequently used to improve the accuracy of the estimators when estimating the unknown population parameters. In this paper, we propose a new difference-cum-exponential type estimator for the finite population mean using auxiliary information in simple random sampling. The expressions for the bias and mean squared error of the proposed estimator are obtained under first order of approximation. It is shown theoretically, that the proposed estimator is always more efficient than the sample mean, ratio, product, regression and several other existing estimators considered here. An empirical study using 10 data sets is also conducted to validate the theoretical findings.
Información auxiliar se utiliza con frecuencia para mejorar la precisión de los estimadores al estimar los parámetros poblacionales desconocidos. En este trabajo, se propone un nuevo tipo de diferencia-cum-exponencial estimador de la población finita implicar el uso de información auxiliar en muestreo aleatorio simple. Las expresiones para el sesgo y el error cuadrático medio del estimador propuesto se obtienen en primer orden de aproximación. Se muestra teóricamente, que el estimador propuesto es siempre más eficiente que la media de la muestra, la relación de, producto, regresión y varios otros estimadores existentes considerados aquí. Un estudio empírico utilizando 10 conjuntos de datos también se lleva a cabo para validar los resultados teóricos.
https://doi.org/10.15446/rce.v37n1.44366
1Quaid-I-Azam University, Department of Statistics, Islamabad, Pakistan. Professor. Email: javidshabbir@gmail.com
2Quaid-I-Azam University, Department of Statistics, Islamabad, Pakistan. Lecturer. Email: aaabdulhaq@gmail.com
3The University of North Carolina at Greensboro, Department of Mathematics and Statistics, Greensboro, USA. Professor. Email: sngupta@uncg.edu
Auxiliary information is frequently used to improve the accuracy of the estimators when estimating the unknown population parameters. In this paper, we propose a new difference-cum-exponential type estimator for the finite population mean using auxiliary information in simple random sampling. The expressions for the bias and mean squared error of the proposed estimator are obtained under first order of approximation. It is shown theoretically, that the proposed estimator is always more efficient than the sample mean, ratio, product, regression and several other existing estimators considered here. An empirical study using 10 data sets is also conducted to validate the theoretical findings.
Key words: Ratio estimator, Auxiliary Variable, Exponential type estimator, Bias, MSE, Efficiency.
Información auxiliar se utiliza con frecuencia para mejorar la precisión de los estimadores al estimar los parámetros poblacionales desconocidos. En este trabajo, se propone un nuevo tipo de diferencia-cum-exponencial estimador de la población finita implicar el uso de información auxiliar en muestreo aleatorio simple. Las expresiones para el sesgo y el error cuadrático medio del estimador propuesto se obtienen en primer orden de aproximación. Se muestra teóricamente, que el estimador propuesto es siempre más eficiente que la media de la muestra, la relación de, producto, regresión y varios otros estimadores existentes considerados aquí. Un estudio empírico utilizando 10 conjuntos de datos también se lleva a cabo para validar los resultados teóricos.
Palabras clave: estimador de razón, variables auxiliares, estimador tipo exponencial, sesgo, error cuadrático medio.
Texto completo disponible en PDF
References
1. A.K. Das, (1988), Contribution to the Theory of Sampling Strategies Based on Auxiliary Information, Ph.D. thesis, Bidhan Chandra Krishi Viswavidyalay, Nadia West Bengal, India.
2. Abdul Haq, & Javid Shabbir, (2013), 'Improved family of ratio estimators in simple and stratified random sampling', Communications in Statistics-Theory and Methods 42(5), 782-799.
3. B.V. Sukhatme, & L. Chand, (1977), Multivariate Ratio-type Estimators, 'Proceedings of the Social Statistics Section', American Statistical Association, Michigan, p. 927-931.
4. C Kalidar, & H Cingi, (2007), 'Improvement in Variance Estimation in Simple Random Sampling', Communication in Statistics-Theory and Methods 36, 2075-2081.
5. C. Kalidar, & H. Cingi, (2005), 'A new Estimator using two Auxiliary Variables', Applied Mathematics and Computation 162(2), 901-908.
6. Donald T Searls, (1964), 'The utilization of a known coefficient of variation in the estimation procedure', Journal of the American Statistical Association 59(308), 1225-1226.
7. G. S. Maddala, (1977), Econometrics, Economics handbook series, McGraw Hills Publication Company, New York.
8. Housila P. Singh,, Balkishan Sharma, & Rajesh Tailor, (2014), 'Hartley-Ross Type Estimators for Population Mean Using Known Parameters of Auxiliary Variate', Communications in Statistics-Theory and Methods 43(3), 547-565.
9. Lovleen Kumar Grover, & Parmdeep Kaur, (2011), 'An Improved Estimator of the Finite Population Mean in Simple Random Sampling', Model Assisted Statistics and Applications 6(1), 47-55.
10. Lovleen Kumar Grover, & Parmdeep Kaur, (2014), 'A Generalized Class of Ratio Type Exponential Estimators of Population Mean Under Linear Transformation of Auxiliary Variable', Communications in Statistics-Simulation and Computation 43(7), 1552-1574.
11. M. N. Murthy, (1977), Sampling: Theory and Methods, Statistical Pub. Society.
12. M.N. Murthy, (1964), 'Product method of estimation', Sankhya A 26(1), 69-74.
13. R Singh,, P Chauhan,, N Sawan, & F Smarandache, (2009), 'Improvement in estimating the population mean using exponential estimator in simple random sampling', Bulletin of Statistics and Economics 3(13), 13-18.
14. R Singh,, P. Chauhan, & N. Sawan, (2008), 'On linear combination of ratio and product type exponential estimator for estimating the finite population mean', Statistics in Transition 9(1), 105-115.
15. R.G.D Steel,, J.H. Torrie, & D.A. Dickey, (1960), Principles and Procedures of Statistics, McGraw-Hill Companies, Michigan.
16. Rani S Srivnstava,, SP Srivastava, & BB Khare, (1989), 'Chain ratio type estimator for ratio of two population means using auxiliary characters', Communications in Statistics-Theory and Methods 18(10), 3917-3926.
17. Shashi Bahl, & RK Tuteja, (1991), 'Ratio and product type exponential estimators', Journal of Information and Optimization Sciences 12(1), 159-164.
18. Subhash Kumar Yadav, & Cem Kadilar, (2013), 'Improved Exponential Type Ratio Estimator of Population Variance', Revista Colombiana de Estadística 36(1), 145-152.
19. TJ Rao, (1991), 'On certain methods of improving ratio and regression estimators', Communications in Statistics-Theory and Methods 20(10), 3325-3340.
20. W. G. Cochran, (1940), 'The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce', The Journal of Agricultural Science 30(02), 262-275.
21. W. G. Cochran, (1977), Sampling Techniques, 3 edn, John Wiley and Sons, New York.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n1a13,
AUTHOR = {Shabbir, Javid and Haq, Abdul and Gupta, Sat},
TITLE = {{A New Difference-Cum-Exponential Type Estimator of Finite Population Mean in Simple Random Sampling}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {1},
pages = {199-211}
}
References
Bahl, S. & Tuteja, R. (1991), ‘Ratio and product type exponential estimators’, Journal of Information and Optimization Sciences 12(1), 159–164.
Cochran, W. G. (1940), ‘The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce’, The Journal of Agricultural Science 30(02), 262–275.
Cochran, W. G. (1977), Sampling Techniques, 3 edn, John Wiley and Sons, New York.
Das, A. (1988), Contribution to the Theory of Sampling Strategies Based on Auxiliary Information, Ph.D. thesis, Bidhan Chandra Krishi Viswavidyalay, Nadia West Bengal, India.
Grover, L. K. & Kaur, P. (2011), ‘An improved estimator of the finite population mean in simple random sampling’, Model Assisted Statistics and Applications 6(1), 47–55.
Grover, L. K. & Kaur, P. (2014), ‘A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable’, Communications in Statistics-Simulation and Computation 43(7), 1552–1574.
Haq, A. & Shabbir, J. (2013), ‘Improved family of ratio estimators in simple and stratified random sampling’, Communications in Statistics-Theory and Methods 42(5), 782–799.
Kalidar, C. & Cingi, H. (2005), ‘A new estimator using two auxiliary variables’, Applied Mathematics and Computation 162(2), 901–908.
Kalidar, C. & Cingi, H. (2007), ‘Improvement in variance estimation in simple random sampling’, Communication in Statistics-Theory and Methods 36, 2075–2081.
Maddala, G. S. (1977), Econometrics, Economics handbook series, McGraw Hills Publication Company, New York.
Murthy, M. (1964), ‘Product method of estimation’, Sankhya A 26(1), 69–74.
Murthy, M. N. (1977), Sampling: Theory and Methods, Statistical Pub. Society.
Rao, T. (1991), ‘On certain methods of improving ratio and regression estimators’,Communications in Statistics-Theory and Methods 20(10), 3325–3340.
Searls, D. T. (1964), ‘The utilization of a known coefficient of variation in the estimation procedure’, Journal of the American Statistical Association 59(308), 1225–1226.
Singh, H. P., Sharma, B. & Tailor, R. (2014), ‘Hartley-Ross type estimators for population mean using known parameters of auxiliary variate’, Communications in Statistics-Theory and Methods 43(3), 547–565.
Singh, R., Chauhan, P. & Sawan, N. (2008), ‘On linear combination of ratio and product type exponential estimator for estimating the finite population mean’, Statistics in Transition 9(1), 105–115.
Singh, R., Chauhan, P., Sawan, N. & Smarandache, F. (2009), ‘Improvement in estimating the population mean using exponential estimator in simple random sampling’, Bulletin of Statistics and Economics 3(13), 13–18.
Srivnstava, R. S., Srivastava, S. & Khare, B. (1989), ‘Chain ratio type estimator for ratio of two population means using auxiliary characters’, Communications in Statistics-Theory and Methods 18(10), 3917–3926.
Steel, R., Torrie, J. & Dickey, D. (1960), Principles and Procedures of Statistics, McGraw-Hill Companies, Michigan.
Sukhatme, B. & Chand, L. (1977), Multivariate ratio-type estimators, in ‘Proceedings of the Social Statistics Section’, American Statistical Association, Michigan, pp. 927–931.
Yadav, S. K. & Kadilar, C. (2013), ‘Improved exponential type ratio estimator of population variance’, Revista Colombiana de Estadística 36(1), 145–152.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Khazan Sher, Muhammad Iqbal, Hameed Ali, Soofia Iftikhar, Maggie Aphane, Ahmed Audu. (2025). Novel efficient estimators of finite population mean in simple random sampling. Scientific African, 27, p.e02598. https://doi.org/10.1016/j.sciaf.2025.e02598.
2. Khazan Sher, Muhammad Ameeq, Muhammad Muneeb Hassan, Olayan Albalawi, Ayesha Afzal. (2024). Development of improved estimators of finite population mean in simple random sampling with dual auxiliaries and its application to real world problems. Heliyon, 10(10), p.e30991. https://doi.org/10.1016/j.heliyon.2024.e30991.
3. Aamir Sanaullah, Iqra Niaz, Javid Shabbir, Iqra Ehsan. (2022). A class of hybrid type estimators for variance of a finite population in simple random sampling. Communications in Statistics - Simulation and Computation, 51(10), p.5609. https://doi.org/10.1080/03610918.2020.1776873.
4. Ran Vijay Kumar Singh, Ahmed Audu. (2024). A Binary-Type Exponential Estimator for Estimating Finite Population Mean. Revista Colombiana de Estadística, 47(1), p.151. https://doi.org/10.15446/rce.v47n1.110929.
5. Poonam Singh, Prayas Sharma, Anjali Singh. (2025). Estimation of population mean using generalized neutrosophic exponential estimators. Research in Mathematics, 12(1) https://doi.org/10.1080/27684830.2025.2474774.
6. Lorenzo Cevallos-Torres, Miguel Botto-Tobar. (2019). Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation. Studies in Computational Intelligence. 824, p.13. https://doi.org/10.1007/978-3-030-13393-1_2.
7. Kanwal Iqbal, Syed Muhammad Muslim Raza, Muhammad Moeen Butt, Hijaz Ahmad, Sameh Askar. (2024). On exploring the generalized mixture estimators under simple random sampling and application in health and finance sector. AIP Advances, 14(1) https://doi.org/10.1063/5.0176945.
8. Javid Shabbir, Sat Gupta, Ronald Onyango, Ishfaq Ahmad. (2021). On Using the Conventional and Nonconventional Measures of the Auxiliary Variable for Mean Estimation. Mathematical Problems in Engineering, 2021, p.1. https://doi.org/10.1155/2021/3741620.
9. Abid Hussain, Kalim Ullah, Salman A. Cheema, Akbar Ali Khan, Zawar Hussain. (2022). Empirical distribution function based dual use of auxiliary information for the improved estimation of finite population mean. Concurrency and Computation: Practice and Experience, 34(27) https://doi.org/10.1002/cpe.7346.
10. Gajendra Vishwakarma. (2024). Weighted Strategy for Estimation of Finite Population Mean in Presence of Auxiliary Information. Measurement: Interdisciplinary Research and Perspectives, , p.1. https://doi.org/10.1080/15366367.2024.2327010.
11. Isah Muhammad, Yahaya Zakari, Ahmed Audu. (2022). An Alternative Class of Ratio-Regression-Type Estimator under Two-Phase Sampling Scheme. Central Bank of Nigeria Journal of Applied Statistics, 12(2), p.1. https://doi.org/10.33429/Cjas.12221.1/5.
12. Gajendra Kumar Vishwakarma, Sayed Mohammed Zeeshan. (2021). Generalized Ratio-cum-Product Estimator for Finite Population Mean under Two-Phase Sampling Scheme. Journal of Modern Applied Statistical Methods, 19(1), p.2. https://doi.org/10.22237/jmasm/1608553320.
13. Sohaib Ahmad, Javid Shabbir, Muhammad Aamir, Sardar Hussain, Kalim Ullah. (2024). Improved Mean Estimation for a Finite Population with Twofold Auxiliary Variables Under Simple Random Sampling. International Journal of Applied and Computational Mathematics, 10(1) https://doi.org/10.1007/s40819-023-01624-1.
14. Gerald Ikechukwu Onwuka, Wasiu Afolabi Babayemi, Ahmed Audu, Awwal Adejumobi. (2023). On Modification of Some Ratio Estimators using Parameters of Auxiliary Variable for the Estimation of the Population Mean. Oriental Journal of Physical Sciences, 8(1), p.27. https://doi.org/10.13005/OJPS08.01.06.
15. Irfan Aslam, Muhammad Noorul Amin, Amjad Mahmood, Prayas Sharma. (2024). New memory-based ratio estimator in survey sampling. Natural and Applied Sciences International Journal (NASIJ), 5(1), p.168. https://doi.org/10.47264/idea.nasij/5.1.11.
16. Sunil Kumar, Sandeep Bhogal, N. S. Nataraja, M. Viswanathaiah. (2015). Estimation of Population Mean in the Presence of Non-Response and Measurement Error. Revista Colombiana de Estadística, 38(1), p.145. https://doi.org/10.15446/rce.v38n1.48807.
17. Muhammad Irfan, Maria Javed, Zhengyan Lin. (2019). Improved Estimation of Population Mean Through Known Conventional and Non-Conventional Measures of Auxiliary Variable. Iranian Journal of Science and Technology, Transactions A: Science, 43(4), p.1851. https://doi.org/10.1007/s40995-018-0645-2.
18. Surya K. Pal, Housila P. Singh, Sunil Kumar, Kiranmoy Chatterjee. (2018). A family of efficient estimators of the finite population mean in simple random sampling. Journal of Statistical Computation and Simulation, 88(5), p.920. https://doi.org/10.1080/00949655.2017.1408808.
19. Maria Javed, Muhammad Irfan, Sajjad Haider Bhatti, Ronald Onyango, Niansheng Tang. (2021). A Simulation-Based Study for Progressive Estimation of Population Mean through Traditional and Nontraditional Measures in Stratified Random Sampling. Journal of Mathematics, 2021, p.1. https://doi.org/10.1155/2021/9038126.
20. Ceren ÜNAL, Cem KADILAR. (2023). An Improvement in Estimating the Population Mean Based on Family of Estimators with Different Application Areas. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), p.402. https://doi.org/10.54287/gujsa.1333067.
21. Javid Shabbir, Sat Gupta. (2015). A Note on Generalized Exponential Type Estimator for Population Variance in Survey Sampling. Revista Colombiana de Estadística, 38(2), p.385. https://doi.org/10.15446/rce.v38n2.51667.
22. Usman Shahzad, Muhammad Hanif, Nursel Koyuncu. (2019). Some new classes of estimators under linear systematic sampling in absence and presence of non-response. Journal of Statistics and Management Systems, 22(6), p.1067. https://doi.org/10.1080/09720510.2018.1564582.
23. Sohaib Ahmad, Javid Shabbir, Erum Zahid, Muhammad Aamir. (2023). Improved family of estimators for the population mean using supplementary variables under PPS sampling. Science Progress, 106(2) https://doi.org/10.1177/00368504231180085.
24. Aamir Sanaullah, Iram Saleem, Javid Shabbir. (2020). Use of scrambled response for estimating mean of the sensitivity variable. Communications in Statistics - Theory and Methods, 49(11), p.2634. https://doi.org/10.1080/03610926.2019.1576898.
25. Gamze Özel Kadilar. (2016). A New Exponential Type Estimator for the Population Mean in Simple Random Sampling. Journal of Modern Applied Statistical Methods, 15(2), p.207. https://doi.org/10.22237/jmasm/1478002380.
26. Nikita, Sangeeta Malik. (2022). Regression cum exponential quadratic product type estimator of the population mean in SRS. PROCEEDING OF INTERNATIONAL CONFERENCE ON FRONTIERS OF SCIENCE AND TECHNOLOGY 2021. PROCEEDING OF INTERNATIONAL CONFERENCE ON FRONTIERS OF SCIENCE AND TECHNOLOGY 2021. 2597, p.030004. https://doi.org/10.1063/5.0115267.
27. Atta Ullah, Javid Shabbir, Abdullah Alomair, Mohammed Alomair. (2023). Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function. Axioms, 12(9), p.890. https://doi.org/10.3390/axioms12090890.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).