Published
The Poisson-Lomax Distribution
Distribución Poisson-Lomax
DOI:
https://doi.org/10.15446/rce.v37n1.44369Keywords:
Asymptotic variance-covariance matrix, Compounding, Lifetime distributions, Lomax distribution, Poisson distribution, Maximum likelihood estimation. (en)mezclas, distribuciones de sobrevida, distribució n Lomax, distribución Poisson, estomación máximo-verosímil (es)
Downloads
In this paper we propose a new three-parameter lifetime distribution
with upside-down bathtub shaped failure rate. The distribution is a compound distribution of the zero-truncated Poisson and the Lomax distributions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in detail. The maximum likelihood estimators of the unknown parameters are
obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution.
En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezclade la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica. Finalmente, un conjunto de datos reales es analizado para construir el potencial de la nueva distribución propuesta.
https://doi.org/10.15446/rce.v37n1.44369
1King Abdulaziz University, Department of Statistics, Jeddah, Saudi Arabia. Professor. Email: bmalzahrani@kau.edu.sa
2King Abdulaziz University, Department of Statistics, Jeddah, Saudi Arabia. Ph.D student. Email: hsagor123@gmail.com
In this paper we propose a new three-parameter lifetime distribution with upside-down bathtub shaped failure rate. The distribution is a compound distribution of the zero-truncated Poisson and the Lomax distributions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in detail. The maximum likelihood estimators of the unknown parameters are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution.
Key words: Asymptotic variance-covariance matrix, Compounding, Lifetime distributions, Lomax distribution, Poisson distribution, Maximum likelihood estimation.
En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezcla de la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica. Finalmente, un conjunto de datos reales es analizado para construir el potencial de la nueva distribución propuesta.
Palabras clave: mezclas, distribuciones de sobrevida, distribució n Lomax, distribución Poisson, estomación máximo-verosímil.
Texto completo disponible en PDF
References
1. A. W. Marshall, & I. Olkin, (1997), 'A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families', Biometrika 84(3), 641-652.
2. B. Al-Zahrani, (2012), 'Goodness-of-Fit for the Topp-Leone Distribution with Unknown Parameters', Applied Mathematical Sciences 6(128), 6355-6363.
3. B. C. Arnold,, N. Balakrishnan, & H. H. N. Nagaraja, (1992), A First Course in Order Statistics, John Wiley & Sons, New York.
4. C. Kus, (2007), 'A new lifetime distribution', Computational Statistics & Data Analysis 51(9), 4497-4509.
5. E. T. Lee, & J. W. Wang, (2003), Statistical Methods for Survival Data Analysis, 3 edn, John Wiley, New York.
6. H.A. David, & H. N. Nagaraja, (2003), Order Statistics, John Wiley & Sons, Hoboken, New Jersey.
7. Jr. R.G. Miller, (1981), Survival Analysis, John Wiley, New York.
8. M. E. Ghitany,, E. K. Al-Hussaini, & R. A. Al-Jarallah, (2005), 'Marshall-Olkin extended Weibull distribution and its application to censored data', Journal of Applied Statistics 32(10), 1025-1034.
9. M. E. Ghitany,, F. A. Al-Awadhi, & L. A. Alkhalfan, (2007), 'Marshall-Olkin extended Lomax distribution and its application to censored data', Communications in Statistics-Theory and Methods 36(10), 1855-1866.
10. S. A. Al-Awadhi, & M. E. Ghitany, (2001), 'Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data', Journal of Applied Statistical Sciences 10(4), 365-372.
11. T. Alice, & K. K. Jose, (2003), 'Marshall-Olkin Pareto processes', Far East Journal of Theoretical Statistics 2(9), 117-132.
12. V. G. Cancho,, F. Louzada-Neto, & G. D. Barriga, (2011), 'The Poisson-exponential lifetime distribution', Computational Statistics & Data Analysis 55(1), 677-686.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n1a15,
AUTHOR = {Al-Zahrani, Bander and Sagor, Hanaa},
TITLE = {{The Poisson-Lomax Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {1},
pages = {225-245}
}
References
Al-Awadhi, S. A. & Ghitany, M. E. (2001), ‘Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data’, Journal of Applied Statistical Sciences 10(4), 365–372.
Al-Zahrani, B. (2012), ‘Goodness-of-fit for the Topp-Leone distribution with unknown parameters’, Applied Mathematical Sciences 6(128), 6355–6363.
Alice, T. & Jose, K. K. (2003), ‘Marshall-Olkin Pareto processes’, Far East Journal of Theoretical Statistics 2(9), 117–132.
Arnold, B. C., Balakrishnan, N. & Nagaraja, H. H. N. (1992), A First Course in Order Statistics, John Wiley & Sons, New York.
Cancho, V. G., Louzada-Neto, F. & Barriga, G. D. (2011), ‘The Poisson-exponential lifetime distribution’, Computational Statistics & Data Analysis 55(1), 677–686.
David, H. & Nagaraja, H. N. (2003), Order Statistics, John Wiley & Sons, Hoboken, New Jersey.
Ghitany, M. E., Al-Awadhi, F. A. & Alkhalfan, L. A. (2007), ‘Marshall-Olkin extended Lomax distribution and its application to censored data’, Communications in Statistics-Theory and Methods 36(10), 1855–1866.
Ghitany, M. E., Al-Hussaini, E. K. & Al-Jarallah, R. A. (2005), ‘Marshall-Olkin extended Weibull distribution and its application to censored data’, Journal of Applied Statistics 32(10), 1025–1034.
Kus, C. (2007), ‘A new lifetime distribution’, Computational Statistics & Data Analysis 51(9), 4497–4509.
Lee, E. T. & Wang, J. W. (2003), Statistical Methods for Survival Data Analysis, 3 edn, John Wiley, New York.
Marshall, A. W. & Olkin, I. (1997), ‘A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families’, Biometrika 84(3), 641–652.
Miller, J. R. (1981), Survival Analysis, John Wiley, New York.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jamal N. Al Abbasi, Ahmed Z. Afify, Badr Alnssyan, Mustafa S. Shama. (2024). The Lambert-G Family: Properties, Inference, and Applications. Computer Modeling in Engineering & Sciences, 140(1), p.513. https://doi.org/10.32604/cmes.2024.046533.
2. Jagdish Saran, Narinder Pushkarna, Shikha Sehgal. (2021). Relationships for moments of the progressively Type-II right censored order statistics from the power Lomax distribution and the associated inference. Statistics in Transition New Series, 22(4), p.191. https://doi.org/10.21307/stattrans-2021-045.
3. Tahani A. Abushal, Alaa H. Abdel-Hamid. (2021). Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 7(1), p.425. https://doi.org/10.3934/math.2022028.
4. Hazem Al-Mofleh, Ahmed Z. Afify, Noor Akma Ibrahim. (2020). A New Extended Two-Parameter Distribution: Properties, Estimation Methods, and Applications in Medicine and Geology. Mathematics, 8(9), p.1578. https://doi.org/10.3390/math8091578.
5. Muhammad Ijaz, Syed Muhammad Asim, Alamgir, Feng Chen. (2019). Lomax exponential distribution with an application to real-life data. PLOS ONE, 14(12), p.e0225827. https://doi.org/10.1371/journal.pone.0225827.
6. Getachew Tekle, Rasool Roozegar. (2024). An inverse lomax-uniform poisson distribution and joint modeling of repeatedly measured and time-to-event data in the health sectors. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-70797-6.
7. Idika E. Okorie, Anthony C. Akpanta, Johnson Ohakwe, David C. Chikezie, Eunice O. Obi. (2018). The adjusted Fisk Weibull distribution: properties and applications. International Journal of Modelling and Simulation, 38(1), p.13. https://doi.org/10.1080/02286203.2017.1370770.
8. Alaa H. Abdel-Hamid, Atef F. Hashem. (2017). A new lifetime distribution for a series-parallel system: properties, applications and estimations under progressive type-II censoring. Journal of Statistical Computation and Simulation, 87(5), p.993. https://doi.org/10.1080/00949655.2016.1243683.
9. Kaiwei Liu, Yuxuan Zhang, Tushar Jain. (2021). The E-Bayesian Estimation for Lomax Distribution Based on Generalized Type-I Hybrid Censoring Scheme. Mathematical Problems in Engineering, 2021, p.1. https://doi.org/10.1155/2021/5570320.
10. Riyam A. Obaid, Ahmed AL-Adilee. (2023). Comparison of generated odd distributions within an extension of linear combination. THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE (SISC2021): College of Science, Al-Nahrain University. THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE (SISC2021): College of Science, Al-Nahrain University. 2457, p.020004. https://doi.org/10.1063/5.0119044.
11. Huda M. Alshanbari, Muhammad Ijaz, Syed Muhammad Asim, Abd Al-Aziz Hosni El-Bagoury, Javid Gani Dar, Ishfaq Ahmad. (2021). New Weighted Lomax (NWL) Distribution with Applications to Real and Simulated Data. Mathematical Problems in Engineering, 2021, p.1. https://doi.org/10.1155/2021/8558118.
12. Masood Anwar, Amna Bibi. (2018). The Half-Logistic Generalized Weibull Distribution. Journal of Probability and Statistics, 2018, p.1. https://doi.org/10.1155/2018/8767826.
13. Sarmad J. Naser. (2022). The generalized transmuted Lomax distribution. 1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021. 1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021. 2394, p.070017. https://doi.org/10.1063/5.0121159.
14. Hassan Alsuhabi. (2024). The new Topp-Leone exponentied exponential model for modeling financial data. Mathematical Modelling and Control, 4(1), p.44. https://doi.org/10.3934/mmc.2024005.
15. Khushnoor Khan. (2020). Corrigendum to Descriptive Measures of Poisson-Lomax Distribution''. Revista Colombiana de Estadística, 43(2), p.345. https://doi.org/10.15446/rce.v43n2.90242.
16. Farrukh Jamal, Hesham Mohammed Reyad, Soha Othman Ahmed, Muhammad Akbar Ali Shah, Emrah Altun. (2019). EXPONENTIATED HALF-LOGISTIC LOMAX DISTRIBUTION WITH PROPERTIES AND APPLICATION. NED University Journal of Research, XVI(2), p.1. https://doi.org/10.35453/NEDJR-ASCN-2018-0033.
17. Salman Abbas, Muhammad Mohsin. (2020). On the Characteristics of the Pseudo-gamma Distribution with Application in Reliability and Medical Sciences. Iranian Journal of Science and Technology, Transactions A: Science, 44(5), p.1447. https://doi.org/10.1007/s40995-020-00950-z.
18. Bahady I. Mohammed, Yusra A. Tashkandy, Mohmoud M. Abd El-Raouf, Md. Moyazzem Hossain, Mahmoud E. Bakr. (2023). The Markov Bernoulli Lomax with Applications Censored and COVID-19 Drought Mortality Rate Data. Axioms, 12(5), p.439. https://doi.org/10.3390/axioms12050439.
19. Muhammad H Tahir, Gauss M. Cordeiro. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3(1) https://doi.org/10.1186/s40488-016-0052-1.
20. Peter Mecha, Isaac Kipchirchir, George Muhua, Joseph Ottieno. (2025). Lifetime Distribution Based on Generators for Discrete Mixtures with Application to Lomax Distribution. American Journal of Theoretical and Applied Statistics, 14(2), p.51. https://doi.org/10.11648/j.ajtas.20251402.11.
21. Jismi Mathew, Christophe Chesneau. (2020). Some New Contributions on the Marshall–Olkin Length Biased Lomax Distribution: Theory, Modelling and Data Analysis. Mathematical and Computational Applications, 25(4), p.79. https://doi.org/10.3390/mca25040079.
22. Jin Zhao, Humaira Faqiri, Zubair Ahmad, Walid Emam, M. Yusuf, A. M. Sharawy, Ahmed Mostafa Khalil. (2021). The Lomax‐Claim Model: Bivariate Extension and Applications to Financial Data. Complexity, 2021(1) https://doi.org/10.1155/2021/9993611.
23. Sanaa Al-Marzouki, Farrukh Jamal, Christophe Chesneau, Mohammed Elgarhy. (2019). Type II Topp Leone Power Lomax Distribution with Applications. Mathematics, 8(1), p.4. https://doi.org/10.3390/math8010004.
24. Salem A. Alyami, I. Elbatal, Amal S. Hassan, Ehab M. Almetwally. (2023). Engineering Applications with Stress-Strength for a New Flexible Extension of Inverse Lomax Model: Bayesian and Non-Bayesian Inference. Axioms, 12(12), p.1097. https://doi.org/10.3390/axioms12121097.
25. Amal S. Hassan, Ehab M. Almetwally, Samia C. Gamoura, Ahmed S. M. Metwally, Ljubisa Kocinac. (2022). Inverse Exponentiated Lomax Power Series Distribution: Model, Estimation, and Application. Journal of Mathematics, 2022(1) https://doi.org/10.1155/2022/1998653.
26. Nadia Hashim Al-Noor, Rafida M. Elobaid, Suzan J. Obaiys. (2024). Computational Science and Its Applications – ICCSA 2024 Workshops. Lecture Notes in Computer Science. 14816, p.284. https://doi.org/10.1007/978-3-031-65223-3_19.
27. Sandeep Kumar Maurya, Saralees Nadarajah. (2021). Poisson Generated Family of Distributions: A Review. Sankhya B, 83(S2), p.484. https://doi.org/10.1007/s13571-020-00237-8.
28. Waleed Marzouk, Shakaiba Shafiq, Sidra Naz, Farrukh Jamal, Laxmi Prasad Sapkota, M. Nagy, A. H. Mansi, Eslam Hussam, Ahmed M. Gemeay. (2023). A new univariate continuous distribution with applications in reliability. AIP Advances, 13(11) https://doi.org/10.1063/5.0179914.
29. Pelumi E. Oguntunde, Mundher A. Khaleel, Mohammed T. Ahmed, Adebowale O. Adejumo, Oluwole A. Odetunmibi. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Modelling and Simulation in Engineering, 2017, p.1. https://doi.org/10.1155/2017/6043169.
30. Eid A. A. Hassan, Mohammed Elgarhy, Eman A. Eldessouky, Osama H. Mahmoud Hassan, Essam A. Amin, Ehab M. Almetwally. (2023). Different Estimation Methods for New Probability Distribution Approach Based on Environmental and Medical Data. Axioms, 12(2), p.220. https://doi.org/10.3390/axioms12020220.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).