Published
Visualizing Partially Ordered Sets for Socioeconomic Analysis
Visualización de conjuntos ordenados parciales para análisis socioeconómicos
DOI:
https://doi.org/10.15446/rce.v37n2spe.47948Keywords:
Partial Order, Hasse Diagrams, Self-Organizing Map, Visualization (en)Diagramas Hasse, Mapa autoorganizado, Orden parcial, Visualización. (es)
In this paper, we develop a visualization process for partial orders derived from considering many numerical indicators on a statistical population. The issue is relevant, particularly in the field of socio-economic evaluation, where explicitly taking into account incomparabilities among individuals proves much more informative than adhering to classical aggregative and compensative approaches, which collapse complexity into unidimensional rankings. We propose a process of visual analysis based on a combination of tools and concepts from partial order theory, multivariate statistics and visual design. We develop the process through a real example, based on data pertaining to regional competitiveness in Europe.
En este artículo, se desarrolla un proceso de visualización para órdenes parciales derivados al considerar varios indicadores numéricos de una población estadística. Esto es relevante parcialmente en el área de la evaluación socioedonómica donde se toma en cuenta explicitamente incomparabilidades entre los individuos y resulta ser más informativo que la agregación clásica y compensativa que colapsa la complejidad en rankings unidimensionales. Se propone un proceso de análisis visual basado en la combinación herramientas y conceptos de la teoría de orden parcial, estadítica multivariada y diseño usual. Se desarrollo el proceso a través de un ejemplo real, basado en datos de competitividad regional en Europa.
https://doi.org/10.15446/rce.v37n2spe.47948
1University of Milano-Bicocca, Department of Statistics and Quantitative Methods, Italy. Professor. Email: marco.fattore@unimib.it
2University of Milano-Bicocca, Department of Statistics and Quantitative Methods, Italy. Professor. Email: alberto.arcagni@unimib.it
3Company SmartStat, Italy. Researcher. Email: stefanobarberis@hotmail.it
In this paper, we develop a visualization process for partial orders derived from considering many numerical indicators on a statistical population. The issue is relevant, particularly in the field of socio-economic evaluation, where explicitly taking into account incomparabilities among individuals proves much more informative than adhering to classical aggregative and compensative approaches, which collapse complexity into unidimensional rankings. We propose a process of visual analysis based on a combination of tools and concepts from partial order theory, multivariate statistics and visual design. We develop the process through a real example, based on data pertaining to regional competitiveness in Europe.
Key words: Partial Order, Hasse Diagrams, Self-Organizing Map, Visualization.
En este artículo, se desarrolla un proceso de visualización para órdenes parciales derivados al considerar varios indicadores numéricos de una población estadística. Esto es relevante parcialmente en el área de la evaluación socioedonómica donde se toma en cuenta explicitamente incomparabilidades entre los individuos y resulta ser más informativo que la agregación clásica y compensativa que colapsa la complejidad en rankings unidimensionales. Se propone un proceso de análisis visual basado en la combinación herramientas y conceptos de la teoría de orden parcial, estadítica multivariada y diseño usual. Se desarrollo el proceso a través de un ejemplo real, basado en datos de competitividad regional en Europa
Palabras clave: diagramas Hasse, mapa autoorganizado, orden parcial, visualización.
Texto completo disponible en PDF
References
1. Al-Sharrah, G. (2014), Ranking Hazarduous chemicals with a heuristic approach to reduce isolated objectds in Hasse Diagrams, 'Multi-indicator Systems and Modelling in Partial Order', Springer-Verlag, New York, p. 217-235.
2. Annoni, P. & Dijkstra, L. (2013), EU Regional Competitiveness Index - RCI 2013, Joint Research Centre of the European Commission, Luxembourg.
3. Barthélemy, J.P., Flament, C. & Monjardet, B. (1982), 'Ordered sets and social sciences', Ordered Sets 83,, 721-758.
4. Bruggemann, R. & Carlsen, L. (2014), 'Incomparable - what now? Absorption of incomparabilities by cluster and fuzzy-methods', Quality and Quantity. forthcoming.
5. Davey, B. A. & Priestley, H. A. (2002), Introduction to Lattices and Order, Cambridge University Press.
6. Dijkstra, L., Annoni, P. & Kozovska, K. (2011), A new European Regional Competitiveness Index: Theory, Methods and Findings, 02/2011, European Union Regional Policy Working Papers. (RCI 2010).
7. Fattore, M. & Arcagni, A. (2014), PARSEC: an R package for poset-based evaluation of multidimensional poverty, 'Multi-indicator Systems and Modelling in Partial Order', Springer-Verlag, New York, p. 317-330.
8. Fattore, M., Bruggemann, R. & Owsinski, J. (2011), Using poset theory to compare fuzzy multidimensional material deprivation across regions, 'New Perspectives in Statistical Modeling and Data Analysis', Springer-Verlag.
9. Fattore, M., Maggino, F. & Colombo, E. (2012), From composite indicators to partial order: Evaluating socio-economic phenomena through ordinal data, 'Quality of Life in Italy: Research and Reflections, Social Indicators Research Series 48', Springer.
10. Fattore, M., Maggino, F. & Greselin, F. (2011), 'Socio-economic evaluation with ordinal variables: Integrating counting and poset approaches', Statistica & Applicazioni, 31-42. Special Issue.
11. Freese, R. (2004), Automated lattice drawing, 'Concept Lattices', Springer-Verlag, Berlin, p. 112-127.
12. Kohonen, T. (2001), Self-Organizing Maps, Springer.
13. R Core Team, (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *http://www.R-project.org/
14. Rival, I. (1984), Graphs and Order. The Role of Graphs in the Theory of Ordered Sets and its Applications, Vol. 147 of Nato Science Series C, Springer, Dordrecht.
15. Rival, I. (1985), The diagram, 'Graphs and Order', D.Reidel Publishing Company, p. 103-133.
16. Rival, I. (1989), 'Graphical data structures for ordered sets', Algorithms and Order 255, 3-31.
17. Sen, A. (1992), Inequality Reexamined, Oxford University Press.
18. Tsakovski, S. & Simeonov, V. (2008), Hasse Diagrams as Explanatory Tool in Environmental Data Mining: A Case Study, 'Multicriteria Ordering and Ranking: Partial Orders, Ambiguities and Applied Issues', Systems Research Institute Polish Academy of Sciences, Warsaw, p. 50-68.
19. Tsakovski, S. & Simeonov, V. (2011), 'Hasse diagram technique as exploratory tool in sediment pollution assessment', Journal of Chemometrics 25(5), 254-261. doi: 10.1002/cem.1381:1-8.
20. Wehrens, R. & Buydens, L. M. C. (2007), 'Self- and super-organizing maps in R: The Kohonen Package', Journal of Statistical Software 21(5).
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n2a10,
AUTHOR = {Fattore, Marco and Arcagni, Alberto and Barberis, Stefano},
TITLE = {{Visualizing Partially Ordered Sets for Socioeconomic Analysis}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {2},
pages = {437-450}
}
References
Al-Sharrah, G. (2014), Ranking Hazarduous chemicals with a heuristic approach to reduce isolated objectds in Hasse Diagrams, in R. Bruggemann, L. R. Carlsen & J. Wittmann, eds, ‘Multi-indicator Systems and Modelling in Partial Order’, Springer-Verlag, New York, pp. 217–235.
Annoni, P. & Dijkstra, L. (2013), EU Regional Competitiveness Index - RCI 2013, Joint Research Centre of the European Commission, Luxembourg.
Barthélemy, J., Flament, C. & Monjardet, B. (1982), ‘Ordered sets and social sciences’, Ordered Sets 83,, 721–758.
Bruggemann, R. & Carlsen, L. (2014), ‘Incomparable - what now? Absorption of incomparabilities by cluster and fuzzy-methods’, Quality and Quantity. forthcoming.
Davey, B. A. & Priestley, H. A. (2002), Introduction to Lattices and Order, Cambridge University Press.
Dijkstra, L., Annoni, P. & Kozovska, K. (2011), A new European Regional Competitiveness Index: Theory, Methods and Findings, Technical Report 02/2011, European Union Regional Policy Working Papers. (RCI 2010).
Fattore, M. & Arcagni, A. (2014), PARSEC: an R package for poset-based evaluation of multidimensional poverty, in Bruggemann, R. and Carlsen, L. R. and Wittmann, J., ed., ‘Multi-indicator Systems and Modelling in Partial Order’, Springer-Verlag, New York, pp. 317–330.
Fattore, M., Bruggemann, R. & Owsinski, J. (2011), Using poset theory to compare fuzzy multidimensional material deprivation across regions, in Ingrassia, S. and Rocci, R. and Vichi, M., ed., ‘New Perspectives in Statistical Modeling and Data Analysis’, Springer-Verlag.
Fattore, M., Maggino, F. & Colombo, E. (2012), From composite indicators to partial order: Evaluating socio-economic phenomena through ordinal data, in Maggino, F. and Nuvolati, G. , ed., ‘Quality of Life in Italy: Research and Reflections, Social Indicators Research Series 48’, Springer.
Fattore, M., Maggino, F. & Greselin, F. (2011), ‘Socio-economic evaluation with ordinal variables: Integrating counting and poset approaches’, Statistica & Applicazioni pp. 31–42. Special Issue.
Freese, R. (2004), Automated lattice drawing, in P. Eklund, ed., ‘Concept Lattices’, Springer-Verlag, Berlin, pp. 112–127.
Kohonen, T. (2001), Self-Organizing Maps, Springer.
R Core Team (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
Rival, I. (1984), Graphs and Order. The Role of Graphs in the Theory of Ordered Sets and its Applications, Vol. 147 of Nato Science Series C, Springer, Dordrecht.
Rival, I. (1985), The diagram, in ‘Graphs and Order’, D.Reidel Publishing Company, pp. 103–133.
Rival, I. (1989), ‘Graphical data structures for ordered sets’, Algorithms and Order 255, 3–31.
Sen, A. (1992), Inequality Reexamined, Oxford University Press.
Tsakovski, S. & Simeonov, V. (2008), Hasse Diagrams as Explanatory Tool in Environmental Data Mining: A Case Study, in J. Owsinski & R. Bruggemann, eds, ‘Multicriteria Ordering and Ranking: Partial Orders, Ambiguities and Applied Issues’, Systems Research Institute Polish Academy of Sciences, Warsaw, pp. 50–68.
Tsakovski, S. & Simeonov, V. (2011), ‘Hasse diagram technique as exploratory tool in sediment pollution assessment’, Journal of Chemometrics 25(5), 254–261. doi: 10.1002/cem.1381:1-8.
Wehrens, R. & Buydens, L. M. C. (2007), ‘Self- and super-organizing maps in R: The Kohonen Package’, Journal of Statistical Software 21(5).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carlos Alirio Díaz González, Yilber Manuel Mendez Calderón, Nicolas Alberto Mojica Cruz, Leonardo Esteban Pacheco Sandoval. (2022). Typologies of Colombian off-grid localities using PCA and clustering analysis for a better understanding of their situation to meet SDG-7. Cleaner Energy Systems, 3, p.100023. https://doi.org/10.1016/j.cles.2022.100023.
2. Marco Fattore, Filomena Maggino, Alberto Arcagni. (2015). Exploiting Ordinal Data for Subjective Well-Being Evaluation. Statistics in Transition New Series, 16(3), p.409. https://doi.org/10.21307/stattrans-2015-023.
3. Valeria Ibáñez-Forés, Clarisa Alejandrino, María D. Bovea, Irma Mercante. (2023). Prioritising organisational circular economy strategies by applying the partial order set theory: Tool and case study. Journal of Cleaner Production, 406, p.136727. https://doi.org/10.1016/j.jclepro.2023.136727.
4. Miroslav Smatana, Peter Butka. (2017). Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part I. Advances in Intelligent Systems and Computing. 521, p.55. https://doi.org/10.1007/978-3-319-46583-8_5.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).