Published
Simulation Studies of a Hölder Perturbation in a New Estimator for Proportion Considering Extra-Binomial Variability
Estudios de simulación de una perturbación Hölder en un nuevo estimador de proporción considerando la variabilidad extra-binomial
DOI:
https://doi.org/10.15446/rce.v38n1.48803Keywords:
Binomial Distribution, Monte Carlo simulation, Robust Estimator, Robustness (en)Distribución binomial, Estimador robusto, Simulación Monte Carlo, Robustez. (es)
This present work aims to propose an estimator in order to estimate the probability of success of a binomial model that incorporates the extrabinomial variation generated by zero-inflated samples. The construction of this estimator was carried out with a theoretical basis given by the Holder function and its performance was evaluated through Monte Carlo simulation considering different sample sizes, parametric values (π), and excess of zero proportions (γ). It was concluded that for the situations in (γ = 0.20) and (γ = 0.50) that the proposed estimator presents promising results based on the specified margin of error.
El presente trabajo tiene como objetivo proponer un estimador para estimar la probabilidad de éxito de un modelo binomial que incorpora la variación extra-binomial generada por muestras cero-inflados. La construcción de este estimador se llevó a cabo con una base teórica dada por la función Holder y su desempeño fue evaluado a través de la simulación de Monte Carlo considerando diferentes tamaños de muestra, valores paramétricos (), y el exceso de proporciones cero ( ). Se concluyó que para las situaciones en ( = 0,20) y ( = 0,50) que el estimador propuesto presenta resultados prometedores basados en el margen de error especificado.
https://doi.org/10.15446/rce.v38n1.48803
1Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Estatística, Santa Maria, Brasil. Professor. Email: augusto.silva@ufsm.br
2Universidade Federal de Lavras, Departamento de Ciências Exatas, Lavras, Brasil. Professor. Email: macufla@dex.ufla.br
This present work aims to propose an estimator in order to estimate the probability of success of a binomial model that incorporates the extra-binomial variation generated by zero-inflated samples. The construction of this estimator was carried out with a theoretical basis given by the Holder function and its performance was evaluated through Monte Carlo simulation considering different sample sizes, parametric values (π), and excess of zero proportions (γ). It was concluded that for the situations in (γ = 0.20) and (γ = 0.50) that the proposed estimator presents promising results based on the specified margin of error.
Key words: Binomial Distribution, Monte Carlo simulation, Robust Estimator, Robustness.
El presente trabajo tiene como objetivo proponer un estimador para estimar la probabilidad de éxito de un modelo binomial que incorpora la variación extra-binomial generada por muestras cero-inflados. La construcción de este estimador se llevó a cabo con una base teórica dada por la función Holder y su desempeño fue evaluado a través de la simulación de Monte Carlo considerando diferentes tamaños de muestra, valores paramétricos (π), y el exceso de proporciones cero (γ). Se concluyó que para las situaciones en (γ = 0,20) y (γ = 0,50) que el estimador propuesto presenta resultados prometedores basados en el margen de error especificado..
Palabras clave: distribución binomial, estimador robusto, simulación Monte Carlo, robustez.
Texto completo disponible en PDF
References
1. Achcar, J. A. & Junqueira, J. G. (2002), 'Extra-binomial variability: A Bayesian approach', Journal of Statistical Research 36, 1-14.
2. Basu, A., Shiyoa, H. & Park, C. (2011), Statistical Inference: The Minimum Distance Approach, Chapman and Hall.
3. Begehr, H. G. W. (1994), Complex Analytic Methods for Partial Differential Equations: An Introductory Text, World Scientific, Singapore.
4. Hinde, S. & Demetrio, G. G. B. (1978), 'Overdispersion models and estimation', Computational Statistics & Data Analysis 34, 69-76.
5. Huber, P. (1964), 'Robust estimation of a location paramenter.', Annals of Mathematical Statistics 35, 73-101.
6. Kupper, L. L. & Haseman, J. K. (1998), 'The use of a correlated binomial model for the analysis of certain toxicological experiments', Biometrics 27, 151-170.
7. Lindsay, B. G. (1994), 'Efficiency versus robustness: The case for minimum Hellinger distance and related methods', The Annals of Statistics 22, 1081-1114.
8. Park, C., Basu, A. & Lindsay, B. (2002), 'The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators', Computational Statistics and Data Analysis 39, 21-33.
9. R Development Core Team, (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
10. Ruckstuhl, A. F. & Welsh, A. H. (2001), 'Robust fitting of the binomial model', The Annals of Statistics 29, 1117-1136.
11. Silva, A. M. & Cirillo, M. A. (2010), 'Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado', Acta Scientiarum. Technology 32, 303-307.
12. Simpson, D. G. (1987), 'Minimum Hellinger distance estimation for the analysis of count data', Journal of the American Statistical Association 82, 802-807.
13. Simpson, D. G., Carrol, R. J. & Ruppert, D. (1987), 'M-estimation for discrete data: asymptoptic distribution theory and implications', The Annals of Statistics 15(2), 657-669.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n1a05,
AUTHOR = {Maciel da Silva, Augusto and Angelo Cirillo, Marcelo},
TITLE = {{Simulation Studies of a Hölder Perturbation in a New Estimator for Proportion Considering Extra-Binomial Variability}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {1},
pages = {93-105}
}
References
Achcar, J. A. & Junqueira, J. G. (2002), ‘Extra-binomial variability: A Bayesian approach’, Journal of Statistical Research 36, 1–14.
Basu, A., Shiyoa, H. & Park, C. (2011), Statistical Inference: The Minimum Distance Approach, Chapman and Hall.
Begehr, H. G. W. (1994), Complex Analytic Methods for Partial Differential Equations: An Introductory Text, World Scientific, Singapore.
Hinde, S. & Demetrio, G. G. B. (1978), ‘Overdispersion models and estimation’, Computational Statistics & Data Analysis 34, 69–76.
Huber, P. (1964), ‘Robust estimation of a location paramenter.’, Annals of Mathematical Statistics 35, 73–101.
Kupper, L. L. & Haseman, J. K. (1998), ‘The use of a correlated binomial model for the analysis of certain toxicological experiments’, Biometrics 27, 151–170.
Lindsay, B. G. (1994), ‘Efficiency versus robustness: The case for mínimum Hellinger distance and related methods’, The Annals of Statistics 22, 1081–1114.
Park, C., Basu, A. & Lindsay, B. (2002), ‘The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of mínimum disparity estimators’, Computational Statistics and Data Analysis 39, 21–33.
R Development Core Team (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Ruckstuhl, A. F. & Welsh, A. H. (2001), ‘Robust fitting of the binomial model’, The Annals of Statistics 29, 1117–1136.
Silva, A. M. & Cirillo, M. A. (2010), ‘Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado’, Acta Scientiarum. Technology 32, 303–307.
Simpson, D. G. (1987), ‘Minimum Hellinger distance estimation for the analysis of count data’, Journal of the American Statistical Association 82, 802–807.
Simpson, D. G., Carrol, R. J. & Ruppert, D. (1987), ‘M-estimation for discrete data: Asymptoptic distribution theory and implications’, The Annals of Statistics 15(2), 657–669.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. A. M. Silva, M. Resende, M. Facco, A. R. de Morais, M. A. Cirillo. (2023). Robustness of interpretable components in relation to the effect of outliers using measures and circular distances. Communications in Statistics - Simulation and Computation, 52(5), p.1822. https://doi.org/10.1080/03610918.2021.1891248.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2015 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).