Published
The Exponentiated Generalized Gumbel Distribution
Distribución Gumbel exponencializada generalizada
DOI:
https://doi.org/10.15446/rce.v38n1.48806Keywords:
Gumbel Distribution, Maximum Likelihood, Moment, Rényi Entropy (en)Distribución Gumbel, Entropía de Rényi, Máxima verosimilitud, Momentos. (es)
A class of univariate distributions called the exponentiated generalized class was recently proposed in the literature. A four-parameter model within this class named the exponentiated generalized Gumbel distribution is defined. We discuss the shapes of its density function and obtain explicit expressions for the ordinary moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and Rényi entropy. The density function of the order statistic is derived. The method of maximum likelihood is used to estimate model parameters. We determine the observed information matrix. We provide a Monte Carlo simulation study to evaluate the maximum likelihood estimates of model parameters and two applications to real data to illustrate the importance of the new model.
Recientemente fue propuesta una clase de distribuciones univariadas conocida como la clase exponencializada generalizada. Dentro de esta clase se define un modelo con cuatro parámetros conocido como distribución Gumbel exponencializada generalizada. En este artículo estudiamos las formas de la función de densidad de este modelo, obtenemos expresiones explicitas para los momentos ordinarios, las funciones generadora de momentos y cuantílica, para los desvíos medios, las curvas de Bonferroni y Lorenz, y, para la entropía de Rényi. Derivamos la función de densidad de la estadística de orden. Usamos el método de máxima verosimilitud para estimar los parámetros del modelo. Determinamos la matriz de información observada. Presentamos una simulación de Monte Carlo que evalúa las estimativas de máxima verosimilitud de los parámetros del modelo y presentamos dos aplicaciones a datos reales que ilustran la importancia del modelo nuevo.
https://doi.org/10.15446/rce.v38n1.48806
1Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Estatística, Recife, Brasil. Graduate student. Email: thiagoan.andrade@gmail.com
2Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Estatística, Recife, Brasil. Graduate student. Email: heloisa.mrodrigues@ufpe.br
3Universidade Federal do Piauí, Centro de Ciências da Natureza, Departamento de Estatística, Teresina, Brasil. Assistent Professor. Email: m.p.bourguignon@gmail.com
4Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Estatística, Recife, Brasil. Professor. Email: gauss@de.ufpe.br
A class of univariate distributions called the exponentiated generalized class was recently proposed in the literature. A four-parameter model within this class named the exponentiated generalized Gumbel distribution is defined. We discuss the shapes of its density function and obtain explicit expressions for the ordinary moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and Rényi entropy. The density function of the order statistic is derived. The method of maximum likelihood is used to estimate model parameters. We determine the observed information matrix. We provide a Monte Carlo simulation study to evaluate the maximum likelihood estimates of model parameters and two applications to real data to illustrate the importance of the new model.
Key words: Gumbel Distribution, Maximum Likelihood, Moment, Rényi Entropy.
Recientemente fue propuesta una clase de distribuciones univariadas conocida como la clase exponencializada generalizada. Dentro de esta clase se define un modelo con cuatro parámetros conocido como distribución Gumbel exponencializada generalizada. En este artículo estudiamos las formas de la función de densidad de este modelo, obtenemos expresiones explicitas para los momentos ordinarios, las funciones generadora de momentos y cuantílica, para los desvíos medios, las curvas de Bonferroni y Lorenz, y, para la entropía de Rényi. Derivamos la función de densidad de la estadística de orden. Usamos el método de máxima verosimilitud para estimar los parámetros del modelo. Determinamos la matriz de información observada. Presentamos una simulación de Monte Carlo que evalúa las estimativas de máxima verosimilitud de los parámetros del modelo y presentamos dos aplicaciones a datos reales que ilustran la importancia del modelo nuevo.
Palabras clave: distribución Gumbel, entropía de Rényi, máxima verosimilitud, momentos.
Texto completo disponible en PDF
References
1. Carrasco, J. M. F., Ortega, E. M. M. & Cordeiro, G. M. (2008), 'A generalized modified Weibull distribution for lifetime modeling', Computational Statistics and Data Analysis 53, 450-462.
2. Chen, G. & Balakrishnan, N. (1995), 'A general purpose approximate goodness-of-fit test', Journal of Quality Technology 27, 154-161.
3. Cordeiro, G. M., Nadarajah, S. & Ortega, E. M. M. (2012), 'The Kumaraswamy Gumbel distribution', Statistical Methods and Applications 21, 139-168.
4. Cordeiro, G. M., Ortega, E. M. M. & Cunha, D. C. C. (2013), 'The exponentiated generalized class of distributions', Journal of Data Science 11, 1-27.
5. Cordeiro, G. M., Ortega, E. M. M. & Silva, G. O. (2011), 'The exponentiated generalized Gamma distribution with application to lifetime data', Journal of Statistical Computation and Simulation 81, 827-842.
6. Cordeiro, G. M. & de Castro, M. (2011), 'A new family of generalized distributions', Journal of Statistical Computation and Simulation 81, 883-893.
7. Eugene, N., Lee, C. & Famoye, F. (2002), 'Beta-normal distribution and its applications', Communications in Statistics - Theory and Methods 31, 497-512.
8. Gupta, R. D. & Kundu, D. (2001), 'Exponentiated exponential distribution: An alternative to Gamma and Weibull distributions', Biometrical Journal 43, 117-130.
9. Hinkley, D. (1977), 'On quick choice of power transformations', The American Statistician 26, 67-69.
10. Kenney, J. F. & Keeping, E. S. (1962), Mathematics of Statistics, 3 edn, Chapman & Hall Ltd, New Jersey.
11. Kotz, S. & Nadarajah, S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press, London.
12. Marshall, A. N. & Olkin, I. (1997), 'A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families', Biometrika 84, 641-652.
13. Moors, J. J. (1988), 'A quantile alternative for kurtosis', Journal of the Royal Statistical Society: Series D 37, 25-32.
14. Murthy, D. N. P., Xie, M. & Jiang, R. (2004), Weibull Models, Wiley series in probability and statistics, John Wiley & Sons, NJ.
15. Nadarajah, S. (2006), 'The exponentiated Gumbel distribution with climate application', Environmetrics 17, 13-23.
16. Nadarajah, S. & Gupta, A. K. (2007), 'The exponentiated Gamma distribution with application to drought data', Calcutta Statistical Association Bulletin 59, 29-54.
17. Nadarajah, S. & Kotz, S. (2003), 'The exponentiated Fréchet distribution', Statistics on the Internet. *http://interstat.statjournals.net/YEAR/2003/articles/0312002.pdf
18. Nadarajah, S. & Kotz, S. (2004), 'The beta Gumbel distribution', Mathematical Problems in Engineering 4, 323-332.
19. Ramos, M. W., Marinho, P. R., Silva, R. V. & Cordeiro, G. M. (2013), 'The Exponentiated Lomax Poisson Distribution with an Application to lifetime data', Advances and Applications in Statistics 34, 107-135.
20. Ristic, M. M. & Balakrishnan, N. (2011), 'The Gamma exponentiated exponential distribution', Journal of Statistical Computation and Simulation. doi: 10.1080/00949655.2011.574633.
21. Rêgo, L. C., Cintra, R. J. & Cordeiro, G. M. (2012), 'On some properties of the Beta normal distribution', Communications in Statistics - Theory and Methods 41, 3722-3738.
22. Shirke, D. T. & Kakde, C. S. (2006), 'On exponentiated lognormal distribution', International Journal of Agricultural and Statistical Sciences 2, 319-326.
23. Zea, L. M., Silva, R. B., Bourguignon, M., Santos, A. M. & Cordeiro, G. M. (2012), 'The Beta exponentiated Pareto distribution with application to Bladder Cancer susceptibility', International Journal of Statistics and Probability 1, 8-19.
24. Zografos, K. & Balakrishnan, N. (2009), 'On families of Beta- and generalized Gamma-generated distributions and associated inference', Statistical Methodology 6, 344-362.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n1a07,
AUTHOR = {Andrade, Thiago and Rodrigues, Heloisa and Bourguignon, Marcelo and Cordeiro, Gauss},
TITLE = {{The Exponentiated Generalized Gumbel Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {1},
pages = {123-143}
}
References
Carrasco, J. M. F., Ortega, E. M. M. & Cordeiro, G. M. (2008), ‘A generalized modified Weibull distribution for lifetime modeling’, Computational Statistics and Data Analysis 53, 450–462.
Chen, G. & Balakrishnan, N. (1995), ‘A general purpose approximate goodness- of- fit test’, Journal of Quality Technology 27, 154–161.
Cordeiro, G. M. & de Castro, M. (2011), ‘A new family of generalized distributions’, Journal of Statistical Computation and Simulation 81, 883–893.
Cordeiro, G. M., Nadarajah, S. & Ortega, E. M. M. (2012), ‘The Kumaraswamy Gumbel distribution’, Statistical Methods and Applications 21, 139–168.
Cordeiro, G. M., Ortega, E. M. M. & Cunha, D. C. C. (2013), ‘The exponentiated generalized class of distributions’, Journal of Data Science 11, 1–27.
Cordeiro, G. M., Ortega, E. M. M. & Silva, G. O. (2011), ‘The exponentiated generalized Gamma distribution with application to lifetime data’, Journal of Statistical Computation and Simulation 81, 827–842.
Eugene, N., Lee, C. & Famoye, F. (2002), ‘Beta-normal distribution and its applications’, Communications in Statistics - Theory and Methods 31, 497–512.
Gupta, R. D. & Kundu, D. (2001), ‘Exponentiated exponential distribution: An alternative to Gamma and Weibull distributions’, Biometrical Journal 43, 117– 130.
Hinkley, D. (1977), ‘On quick choice of power transformations’, The American Statistician 26, 67–69.
Kenney, J. F. & Keeping, E. S. (1962), Mathematics of Statistics, 3 edn, Chapman & Hall Ltd, New Jersey.
Kotz, S. & Nadarajah, S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press, London.
Marshall, A. N. & Olkin, I. (1997), ‘A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families’, Biometrika 84, 641–652.
Moors, J. J. (1988), ‘A quantile alternative for kurtosis’, Journal of the Royal Statistical Society: Series D 37, 25–32.
Murthy, D. N. P., Xie, M. & Jiang, R. (2004), Weibull Models, Wiley series in probability and statistics, John Wiley & Sons, NJ.
Nadarajah, S. (2006), ‘The exponentiated Gumbel distribution with climate application’, Environmetrics 17, 13–23.
Nadarajah, S. & Gupta, A. K. (2007), ‘The exponentiated Gamma distribution with application to drought data’, Calcutta Statistical Association Bulletin 59, 29–54.
Nadarajah, S. & Kotz, S. (2003), ‘The exponentiated Fréchet distribution’, Statistics on the Internet.
*http://interstat.statjournals.net/YEAR/2003/articles/0312002.pdf
Nadarajah, S. & Kotz, S. (2004), ‘The beta Gumbel distribution’, Mathematical Problems in Engineering 4, 323–332.
Ramos, M. W., Marinho, P. R., Silva, R. V. & Cordeiro, G. M. (2013), ‘The Exponentiated Lomax Poisson Distribution with an Application to lifetime data’, Advances and Applications in Statistics 34, 107–135.
Rêgo, L. C., Cintra, R. J. & Cordeiro, G. M. (2012), ‘On some properties of the Beta normal distribution’, Communications in Statistics - Theory and Methods 41, 3722–3738.
Ristic, M. M. & Balakrishnan, N. (2011), ‘The Gamma exponentiated exponential distribution’, Journal of Statistical Computation and Simulation. doi: 10.1080/00949655.2011.574633.
Shirke, D. T. & Kakde, C. S. (2006), ‘On exponentiated lognormal distribution’, International Journal of Agricultural and Statistical Sciences 2, 319–326.
Tahir, M. & Nadarajah, S. (2013), ‘Parameter induction in continuous univariate distributions - Part I: Well-established G-classes’, Communications in Statistics - Theory and Methods.
Zea, L. M., Silva, R. B., Bourguignon, M., Santos, A. M. & Cordeiro, G. M. (2012), ‘The Beta exponentiated Pareto distribution with application to Bladder Cancer susceptibility’, International Journal of Statistics and Probability 1, 8–19.
Zografos, K. & Balakrishnan, N. (2009), ‘On families of Beta- and generalized Gamma-generated distributions and associated inference’, Statistical Methodology 6, 344–362.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Mundher Abdullah Khaleel, Noor Akma Ibrahim, Mahendran Shitan, Faton Merovci. (2018). New extension of Burr type X distribution properties with application. Journal of King Saud University - Science, 30(4), p.450. https://doi.org/10.1016/j.jksus.2017.05.007.
2. S.M.T.K. MirMostafaee, Morad Alizadeh, Emrah Altun, Saralees Nadarajah. (2019). The exponentiated generalized power Lindley distribution: Properties and applications. Applied Mathematics-A Journal of Chinese Universities, 34(2), p.127. https://doi.org/10.1007/s11766-019-3515-6.
3. Aisha Fayomi, Sadaf Khan, Muhammad Hussain Tahir, Ali Algarni, Farrukh Jamal, Reman Abu-Shanab, Jiangtao Gou. (2022). A new extended gumbel distribution: Properties and application. PLOS ONE, 17(5), p.e0267142. https://doi.org/10.1371/journal.pone.0267142.
4. M. S. Eliwa, M. El-Morshedy. (2019). Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application. Annals of Data Science, 6(1), p.39. https://doi.org/10.1007/s40745-018-00190-4.
5. ElSayed A. ElSherpieny, Ehab Mohamed Almetwally. (2022). The Exponentiated Generalized Alpha Power Family of Distribution: Properties and Applications. Pakistan Journal of Statistics and Operation Research, , p.349. https://doi.org/10.18187/pjsor.v18i2.3515.
6. Hilary I. Okagbue, Olasunmbo O. Agboola, Abiodun A. Opanuga, Jimevwo G. Oghonyon, Pelumi E. Oguntunde. (2019). Transactions on Engineering Technologies. , p.171. https://doi.org/10.1007/978-981-13-2191-7_13.
7. Farwa Willayat, Naz Saud, Muhammad Ijaz, Anita Silvianita, Mahmoud El-Morshedy, Fathalla A. Rihan. (2022). Marshall–Olkin Extended Gumbel Type‐II Distribution: Properties and Applications. Complexity, 2022(1) https://doi.org/10.1155/2022/2219570.
8. Bamidele OSENİ, Hassan OKASHA. (2020). Gumbel-Geometric Distribution: Properties and Applications. Gazi University Journal of Science, 33(4), p.925. https://doi.org/10.35378/gujs.607974.
9. Felipe R. S. de Gusmão, Frank Gomes-Silva, Cícero C. R. de Brito, Fábio V. J. Silveira, Jader S. Jale, Sílvio F. A. Xavier-Júnior, Pedro R. D. Marinho. (2021). Analyzing and solving the identifiability problem in the exponentiated generalized Weibull distribution. Journal of the Egyptian Mathematical Society, 29(1) https://doi.org/10.1186/s42787-021-00130-x.
10. Laila A. Al-Essa, Abdus Saboor, Muhammad H. Tahir, Sadaf Khan, Farrukh Jamal, Ahmed Elhassanein. (2024). Bivariate q- generalized extreme value distribution: A comparative approach with applications to climate related data. Heliyon, 10(8), p.e27659. https://doi.org/10.1016/j.heliyon.2024.e27659.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2015 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).