Published

2015-01-01

Estimating Population Proportions by Means of Calibration Estimators

Estimación de proporciones poblacionales mediante estimadores de calibración

DOI:

https://doi.org/10.15446/rce.v38n1.48814

Keywords:

Auxiliary Information, Calibration, Estimators, Finite Population, Sampling Design (en)
Calibración, Diseño muestral, Estimadores, Información auxiliar, Población finita (es)

Downloads

Authors

  • Antonio Arcos University of Granada, Granada, España
  • Helena Martínez University of Almería, Almería, España
  • Sarjinder Singh Texas A&M University-Kingsville, Kingsville Texas, United States

This paper considers the problem of estimating the population proportion of a categorical variable using the calibration framework. Different situations are explored according to the level of auxiliary information available and the theoretical properties are investigated. A new class of estimator based upon the proposed calibration estimators is also defined, and the optimal estimator in the class, in the sense of minimal variance, is derived. Finally, an estimator of the population proportion, under new calibration conditions, is defined. Simulation studies are considered to evaluate the performance of the proposed calibration estimators via the empirical relative bias and the empirical relative efficiency, and favourable results are achieved.

El artículo considera el problema de la estimación de la proporción poblacional de una variable categórica usando como marco de trabajo la calibración. Se exploran diferentes situaciones de acuerdo con la información auxiliar disponible y se investigan las propiedades teóricas.. Una nueva clase de estimadores basada en los estimadores de calibración propuestos también es definida y el estimador óptimo en la clase, en el sentido de varianza mínima, es obtenido. Finalmente, un estimador de la proporción poblacional, bajo nuevas condiciones de calibración es también propuesto. Estudios de simulación para evaluar el comportamiento de los estimadores calibrados propuestos a través del sesgo relativo empírico y de la eficiencia relativa empírica son incluidos, obteniéndose resultados satisfactorios.

https://doi.org/10.15446/rce.v38n1.48814

Estimating Population Proportions by Means of Calibration Estimators

Estimación de proporciones poblacionales mediante estimadores de calibración

SERGIO MARTÍNEZ1, ANTONIO ARCOS2, HELENA MARTÍNEZ3, SARJINDER SINGH4

1University of Almería, Math Department, Almería, España. Professor. Email: spuertas@ual.es
2University of Granada, Department of Statistics and Operational Research, Granada, España. Professor. Email: arcos@ugr.es
3University of Almería, Math Department, Almería, España. Ph.D. Research Assistant. Email: hmartinez@ual.es
4Texas A&M University-Kingsville, Department of Mathematics, Kingsville Texas, United States. Associate Professor. Email: sarjinder.singh@tamuk.edu


Abstract

This paper considers the problem of estimating the population proportion of a categorical variable using the calibration framework. Different situations are explored according to the level of auxiliary information available and the theoretical properties are investigated. A new class of estimator based upon the proposed calibration estimators is also defined, and the optimal estimator in the class, in the sense of minimal variance, is derived. Finally, an estimator of the population proportion, under new calibration conditions, is defined. Simulation studies are considered to evaluate the performance of the proposed calibration estimators via the empirical relative bias and the empirical relative efficiency, and favourable results are achieved.

Key words: Auxiliary Information, Calibration, Estimators, Finite Population, Sampling Design.


Resumen

El artículo considera el problema de la estimación de la proporción poblacional de una variable categórica usando como marco de trabajo la calibración. Se exploran diferentes situaciones de acuerdo con la información auxiliar disponible y se investigan las propiedades teóricas. Una nueva clase de estimadores basada en los estimadores de calibración propuestos también es definida y el estimador óptimo en la clase, en el sentido de varianza mínima, es obtenido. Finalmente, un estimador de la proporción poblacional, bajo nuevas condiciones de calibración es también propuesto. Estudios de simulación para evaluar el comportamiento de los estimadores calibrados propuestos a trav\es del sesgo relativo empírico y de la eficiencia relativa empírica son incluidos, obteniéndose resultados satisfactorios.

Palabras clave: calibración, diseño muestral, estimadores, información auxiliar, población finita.


Texto completo disponible en PDF


References

1. Arnab, R., Shangodoyin, D. K. & Singh, S. (2010), 'Variance estimation of a generalized regression predictor', Journal of the Indian Society of Agricultural Statistics 64(2), 273-288.

2. Deville, Jean-Claude & S¤rndal, Carl-Erik (1992), 'Calibration estimators in survey sampling', Journal of the American Statistical Association 87(418), 376-382.

3. Duchesne, P. (2003), 'Estimation of a proportion with survey data', Journal of Statistics Education 11(3), 1-24.

4. Farrell, P. & Singh, S. (2005), 'Model-assisted higher-order calibration of estimators of variance', Australian & New Zealand Journal of Statistics 47(3), 375-383.

5. Harms, T. & Duchesne, P. (2006), 'On calibration estimation for quantiles', Survey Methodology 32, 37-52.

6. Rueda, M., Martínez, S., Martínez, H. & Arcos, A. (2007), 'Estimation of the distribution function with calibration methods', Journal of Statistical Planning and Inference 137(2), 435-448.

7. Rueda, M., Martínez-Puertas, S., Martínez-Puertas, H. & Arcos, A. (2007), 'Calibration methods for estimating quantiles', Metrika 66(3), 355-371.

8. Rueda, M., Muñoz, J. F., Arcos, A., Álvarez, E. & Martínez, S. (2011), 'Estimators and confidence intervals for the proportion using binary auxiliary information with applications to pharmaceutical studies', Journal of Biopharmaceutical Statistics 21(3), 526-54.

9. Singh, H. P., Singh, S. & Kozak, M. (2008), 'A family of estimators of finite-population distribution functions using auxiliary information', Acta Applicandae Mathematicae 104(2), 115-130.

10. Singh, S. (2001), 'Generalized calibration approach for estimating variance in survey sampling', Annals of the Institute of Statistical Mathematics 53(2), 404-417.

11. Singh, S. (2003), Advanced Sampling Theory with Applications: How Michael 'selected' Amy, Kluwer Academic Publishers.

12. Singh, S., Horn, S., Chowdhury, S. & Yu, F. (1999), 'Calibration of the estimator of variance', Australian and New Zealand Journal of Statistics 41, 199-212.

13. S¤rndal, C. (2007), 'The calibration approach in survey theory and practice', Survey Methodology 33(2), 99-119.

14. Wu, C. & Sitter, Y. R. (2001), 'A model-calibration approach to using complete auxiliary information from survey data', Journals - American Statistical Association 96, 185-193.


[Recibido en octubre de 2013. Aceptado en noviembre de 2014]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv38n1a14,
    AUTHOR  = {Martínez, Sergio and Arcos, Antonio and Martínez, Helena and Singh, Sarjinder},
    TITLE   = {{Estimating Population Proportions by Means of Calibration Estimators}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2015},
    volume  = {38},
    number  = {1},
    pages   = {267-293}
}

References

Arnab, R., Shangodoyin, D. K. & Singh, S. (2010), ‘Variance estimation of a generalized regression predictor’, Journal of the Indian Society of Agricultural Statistics 64(2), 273–288.

Deville, J.-C. & Särndal, C.-E. (1992), ‘Calibration estimators in survey sampling’, Journal of the American Statistical Association 87(418), 376–382.

Duchesne, P. (2003), ‘Estimation of a proportion with survey data’, Journal of Statistics Education 11(3), 1–24.

Farrell, P. & Singh, S. (2005), ‘Model-assisted higher-order calibration of estimators of variance’, Australian & New Zealand Journal of Statistics 47(3), 375–383.

Harms, T. & Duchesne, P. (2006), ‘On calibration estimation for quantiles’, Survey Methodology 32, 37–52.

Rueda, M., Martínez-Puertas, S., Martínez-Puertas, H. & Arcos, A. (2007), ‘Calibration methods for estimating quantiles’, Metrika 66(3), 355–371.

Rueda, M., Martínez, S., Martínez, H. & Arcos, A. (2007), ‘Estimation of the distribution function with calibration methods’, Journal of Statistical Planning and Inference 137(2), 435–448.

Rueda, M., Muñoz, J. F., Arcos, A., Álvarez, E. & Martínez, S. (2011), ‘Estimators and confidence intervals for the proportion using binary auxiliary information with applications to pharmaceutical studies’, Journal of Biopharmaceutical Statistics 21(3), 526–54.

Särndal, C. (2007), ‘The calibration approach in survey theory and practice’, Survey Methodology 33(2), 99–119.

Singh, H. P., Singh, S. & Kozak, M. (2008), ‘A family of estimators of finitepopulation distribution functions using auxiliary information’, Acta Applicandae Mathematicae 104(2), 115–130.

Singh, S. (2001), ‘Generalized calibration approach for estimating variance in survey sampling’, Annals of the Institute of Statistical Mathematics 53(2), 404–417.

Singh, S. (2003), Advanced Sampling Theory with Applications: How Michael ’selected’ Amy, Kluwer Academic Publishers.

Singh, S., Horn, S., Chowdhury, S. & Yu, F. (1999), ‘Calibration of the estimator of variance’, Australian and New Zealand Journal of Statistics 41, 199–212.

Wu, C. & Sitter, Y. R. (2001), ‘A model-calibration approach to using complete auxiliary information from survey data’, Journals - American Statistical Association 96, 185–193.

How to Cite

APA

Arcos, A., Martínez, H. and Singh, S. (2015). Estimating Population Proportions by Means of Calibration Estimators. Revista Colombiana de Estadística, 38(1), 267–293. https://doi.org/10.15446/rce.v38n1.48814

ACM

[1]
Arcos, A., Martínez, H. and Singh, S. 2015. Estimating Population Proportions by Means of Calibration Estimators. Revista Colombiana de Estadística. 38, 1 (Jan. 2015), 267–293. DOI:https://doi.org/10.15446/rce.v38n1.48814.

ACS

(1)
Arcos, A.; Martínez, H.; Singh, S. Estimating Population Proportions by Means of Calibration Estimators. Rev. colomb. estad. 2015, 38, 267-293.

ABNT

ARCOS, A.; MARTÍNEZ, H.; SINGH, S. Estimating Population Proportions by Means of Calibration Estimators. Revista Colombiana de Estadística, [S. l.], v. 38, n. 1, p. 267–293, 2015. DOI: 10.15446/rce.v38n1.48814. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/48814. Acesso em: 29 jan. 2025.

Chicago

Arcos, Antonio, Helena Martínez, and Sarjinder Singh. 2015. “Estimating Population Proportions by Means of Calibration Estimators”. Revista Colombiana De Estadística 38 (1):267-93. https://doi.org/10.15446/rce.v38n1.48814.

Harvard

Arcos, A., Martínez, H. and Singh, S. (2015) “Estimating Population Proportions by Means of Calibration Estimators”, Revista Colombiana de Estadística, 38(1), pp. 267–293. doi: 10.15446/rce.v38n1.48814.

IEEE

[1]
A. Arcos, H. Martínez, and S. Singh, “Estimating Population Proportions by Means of Calibration Estimators”, Rev. colomb. estad., vol. 38, no. 1, pp. 267–293, Jan. 2015.

MLA

Arcos, A., H. Martínez, and S. Singh. “Estimating Population Proportions by Means of Calibration Estimators”. Revista Colombiana de Estadística, vol. 38, no. 1, Jan. 2015, pp. 267-93, doi:10.15446/rce.v38n1.48814.

Turabian

Arcos, Antonio, Helena Martínez, and Sarjinder Singh. “Estimating Population Proportions by Means of Calibration Estimators”. Revista Colombiana de Estadística 38, no. 1 (January 1, 2015): 267–293. Accessed January 29, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/48814.

Vancouver

1.
Arcos A, Martínez H, Singh S. Estimating Population Proportions by Means of Calibration Estimators. Rev. colomb. estad. [Internet]. 2015 Jan. 1 [cited 2025 Jan. 29];38(1):267-93. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/48814

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

360

Downloads

Download data is not yet available.