Published
A Bimodal Extension of the Generalized Gamma Distribution
Una extensión bimodal de la distribución gamma generalizada
DOI:
https://doi.org/10.15446/rce.v38n2.51666Keywords:
Bimodality, Exponential Power Distribution, Generalized Gamma, Skewness (en)Bimodalidad, Distribución potencia exponencial, Gamma generalizada, Sesgo. (es)
Una extensión bimodal de la distribución gamma generalizada es propuesta a través de un enfoque de mixturas. Algunas propiedades de la nueva distribución son investigadas. Los estimadores máximo verosímiles (ML por sus siglas en inglés) de los parámetros de la nueva distribución son obtenidos. Algunos ejemplos con datos reales son utilizados con el fin de mostrar las fortalezas de la nueva distribución en la modelación de datos.
https://doi.org/10.15446/rce.v38n2.51666
1Ankara University, Faculty of Science, Department of Statistics, Ankara, Turkey. Ph.D. Student. Email: mncankaya@ankara.edu.tr
2Osmangazi University, Faculty of Science and Letters, Department of Statistics, Eskisehir, Turkey. Ph.D. Student. Email: ymbulut@ogu.edu.tr
3Ankara University, Faculty of Science, Department of Statistics, Ankara, Turkey. Ph.D. Student. Email: fzdogru@ankara.edu.tr
4Ankara University, Faculty of Science, Department of Statistics, Ankara, Turkey. Professor. Email: oarslan@ankara.edu.tr
A bimodal extension of the generalized gamma distribution is proposed by using a mixing approach. Some distributional properties of the new distribution are investigated. The maximum likelihood (ML) estimators for the parameters of the new distribution are obtained. Real data examples are given to show the strength of the new distribution for modeling data.
Key words: Bimodality, Exponential Power Distribution, Generalized Gamma, Skewness.
Una extensión bimodal de la distribución gamma generalizada es propuesta a través de un enfoque de mixturas. Algunas propiedades de la nueva distribución son investigadas. Los estimadores máximo verosímiles (ML por sus siglas en inglés) de los parámetros de la nueva distribución son obtenidos. Algunos ejemplos con datos reales son utilizados con el fin de mostrar las fortalezas de la nueva distribución en la modelación de datos.
Palabras clave: bimodalidad, distribución potencia exponencial, gamma generalizada, sesgo.
Texto completo disponible en PDF
References
1. Abdulah, E. & Elsalloukh, H. (2013), 'Analyzing skewed data with the epsilon skew Gamma distribution', Journal of Statistics Applications & Probability 2(3), 195-202.
2. Abdulah, E. & Elsalloukh, H. (2014), 'Bimodal class based on the inverted symmetrized Gamma distribution with applications', Journal of Statistics Applications & Probability 3(1), 1-7.
3. Ahmed, S. E., Goria, M. N. & Hussein, A. (2008), 'Gamma mixture: Bimodality, inflexions and L-moments', Communications in Statistics - Theory and Methods 37(8), 1147-1161.
4. Arellano-Valle, R. B., Cortées, M. A. & Góomez, Héector W. (2010), 'An extension of the epsilon-skew-normal distribution', Communications in Statistics - Theory and Methods 39(5), 912-922.
5. Celik, N., Senoglu, B. & Arslan, O. (2015), 'Estimation and testing in one-way ANOVA when the errors are skew-normal', Revista Colombiana de Estadística 38(1), 75-91.
6. Cooray, K. (2013), 'Exponentiated sinh Cauchy distribution with applications', Communications in Statistics - Theory and Methods 42(21), 3838-3852.
7. Cruz-Medina, I. R. (2001), Almost nonparametric and nonparametric estimation in mixture models, Ph.D. Thesis, Pennsylvania State University, Pensilvania.
8. Elal-Olivero, D. (2010), 'Alpha-skew-normal distribution', Proyecciones Journal of Mathematics 29(3), 224-240.
9. Elsalloukh, H., Guardiola, J. H. & Young, M. (2005), 'The epsilon-skew exponential power distribution family', Far East Journal of Theoretical Statistics 16, 97-112.
10. Eugene, N., Lee, C. & Famoye, F. (2002), 'Beta-normal distribution and its applications', Communications in Statistics - Theory and methods 31(4), 497-512.
11. Famoye, F., Lee, C. & Eugene, N. (2004), 'Beta-normal distribution: Bimodality properties and application', Journal of Modern Applied Statistical Methods 3(1), 85-103.
12. Gómez, Héctor W., Elal-Olivero, D., Salinas, H. S. & Bolfarine, H. (2011), 'Bimodal extension based on the skew-normal distribution with application to pollen data', Environmetrics 22(1), 50-62.
13. Genc, A. I. (2013), 'A skew extension of the slash distribution via beta-normal distribution', Statistical Papers 54(2), 427-442.
14. Gui, W. (2014), 'A generalization of the slashed distribution via alpha skew normal distribution', Statistical Methods & Applications 23(4), 547-563.
15. Gómez, Y. M., Bolfarine, H. & Gómez, H. W. (2014), 'A new extension of the exponential distribution', Revista Colombiana de Estadística 37(1), 25-34.
16. Hassan, Y. M. & Hijazi, R. H. (2010), 'A bimodal exponential power distribution', Pakistan Journal of Statistics 26(2), 379-396.
17. Iriarte, Y. A., Gómez, H. W., Varela, H. & Bolfarine, H. (2015), 'Slashed Rayleigh distribution', Revista Colombiana de Estadística 38(1), 31-44.
18. Jamalizadeh, A., Arabpour, A. R. & Balakrishnan, N. (2011), 'A generalized skew two-piece skew-normal distribution', Statistical Papers 52(2), 431-446.
19. Martínez-Flórez, G., Vergara-Cardozo, S. & González, L. M. (2013), 'The family of log-skew-normal alpha-power distributions using precipitation data', Revista Colombiana de Estadística 36(1), 43-57.
20. Mudholkar, G. S. & Hutson, A. D. (2000), 'The epsilon-skew-normal distribution for analyzing near-normal data', Journal of Statistical Planning and Inference 83(2), 291-309.
21. Pereira, J. R., Marques, L. A. & da Costa, J. M. (2012), 'An empirical comparison of EM initialization methods and model choice criteria for mixtures of skew-normal distributions', Revista Colombiana de Estadística 35(3), 457-478.
22. R\^ego, L. C., Cintra, R. J. & Cordeiro, G. M. (2012), 'On some properties of the beta normal distribution', Communications in Statistics - Theory and Methods 41(20), 3722-3738.
23. Rocha, G. H. M. A., Loschi, R. H. & Arellano-Valle, R. B. (2013), 'Inference in flexible families of distributions with normal kernel', Statistics 47(6), 1184-1206.
24. Salinas, H. S., Martínez-Flórez, G. & Moreno-Arenas, G. (2013), 'Censored bimodal symmetric-asymmetric alpha-power model', Revista Colombiana de Estadística 36(2), 287-303.
25. Sanhueza, A., Leiva, V. & Balakrishnan, N. (2008), 'The generalized Birnbaum-Saunders distribution and its theory, methodology, and application', Communications in Statistics - Theory and Methods 37(5), 645-670.
26. Sanhueza, A., Leiva, V. & López-Kleine, L. (2011), 'On the Student-t mixture inverse gaussian model with an application to protein production', Revista Colombiana de Estadística 34(1), 177-195.
27. Shams, H. S. & Alamatsaz, M. H. (2013), 'Alpha-skew-Laplace distribution', Statistics & Probability Letters 83(3), 774-782.
28. Torres-Avilés, F. J., Icaza, G. & Arellano-Valle, R. B. (2012), 'An extension to the scale mixture of normals for bayesian small-area estimation', Revista Colombiana de Estadística 35(2), 185-204.
29. Varadhan, R. & Gilbert, P. D. (2009), 'BB: An R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function', Journal of Statistical Software 32(4), 1-26.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n2a04,
AUTHOR = {\c{C}ankaya, Mehmet Niyazi and Bulut, Yakup Murat and Do\v{g}ru, Fatma Zehra and Arslan, Olcay},
TITLE = {{A Bimodal Extension of the Generalized Gamma Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {2},
pages = {371-384}
}
References
Abdulah, E. & Elsalloukh, H. (2013), ‘Analyzing skewed data with the épsilon skew Gamma Distribution’, Journal of Statistics Applications & Probability 2(3), 195–202.
Abdulah, E. & Elsalloukh, H. (2014), ‘Bimodal class based on the inverted symmetrized gamma distribution with applications’, Journal of Statistics Applications & Probability 3(1), 1–7.
Ahmed, S. E., Goria, M. N. & Hussein, A. (2008), ‘Gamma mixture: Bimodality, inflexions and L-moments’, Communications in Statistics - Theory and Methods 37(8), 1147–1161.
Arellano-Valle, R. B., Cortés, M. A. & Gómez, H. W. (2010), ‘An extension of the epsilon-skew-normal distribution’, Communications in Statistics - Theory and Methods 39(5), 912–922.
Celik, N., Senoglu, B. & Arslan, O. (2015), ‘Estimation and testing in one-way ANOVA when the errors are skew-normal’, Revista Colombiana de Estadística 38(1), 75–91.
Cooray, K. (2013), ‘Exponentiated sinh Cauchy distribution with applications’, Communications in Statistics - Theory and Methods 42(21), 3838–3852.
Cruz-Medina, I. R. (2001), Almost nonparametric and nonparametric estimation in mixture models, Ph.D. Thesis, Pennsylvania State University, Pensilvania.
Elal-Olivero, D. (2010), ‘Alpha-skew-normal distribution’, Proyecciones Journal of Mathematics 29(3), 224–240.
Elsalloukh, H., Guardiola, J. H. & Young, M. (2005), ‘The epsilon-skew exponential power distribution family’, Far East Journal of Theoretical Statistics 16, 97–112.
Eugene, N., Lee, C. & Famoye, F. (2002), ‘Beta-normal distribution and its applications’, Communications in Statistics - Theory and methods 31(4), 497–512.
Famoye, F., Lee, C. & Eugene, N. (2004), ‘Beta-normal distribution: Bimodality properties and application’, Journal of Modern Applied Statistical Methods 3(1), 85–103.
Genc, A. I. (2013), ‘A skew extension of the slash distribution via beta-normal distribution’, Statistical Papers 54(2), 427–442.
Gómez, Y. M., Bolfarine, H. & Gómez, H. W. (2014), ‘A new extension of the exponential distribution’, Revista Colombiana de Estadística 37(1), 25–34.
Gómez, H. W., Elal-Olivero, D., Salinas, H. S. & Bolfarine, H. (2011), ‘Bimodal extension based on the skew-normal distribution with application to pollen data’, Environmetrics 22(1), 50–62.
Gui, W. (2014), ‘A generalization of the slashed distribution via alpha skew normal distribution’, Statistical Methods & Applications 23(4), 547–563.
Hassan, Y. M. & Hijazi, R. H. (2010), ‘A bimodal exponential power distribution’, Pakistan Journal of Statistics 26(2), 379–396.
Iriarte, Y. A., Gómez, H. W., Varela, H. & Bolfarine, H. (2015), ‘Slashed Rayleigh distribution’, Revista Colombiana de Estadística 38(1), 31–44.
Jamalizadeh, A., Arabpour, A. R. & Balakrishnan, N. (2011), ‘A generalized skew two-piece skew-normal distribution’, Statistical Papers 52(2), 431–446.
Martínez-Flórez, G., Vergara-Cardozo, S. & González, L. M. (2013), ‘The family of log-skew-normal alpha-power distributions using precipitation data’, Revista Colombiana de Estadística 36(1), 43–57.
Mudholkar, G. S. & Hutson, A. D. (2000), ‘The epsilon-skew-normal distribution for analyzing near-normal data’, Journal of Statistical Planning and Inference 83(2), 291–309.
Pereira, J. R., Marques, L. A. & da Costa, J. M. (2012), ‘An empirical comparison of EM initialization methods and model choice criteria for mixtures of skewnormal distributions’, Revista Colombiana de Estadística 35(3), 457–478.
Rêgo, L. C., Cintra, R. J. & Cordeiro, G. M. (2012), ‘On some properties of the beta normal distribution’, Communications in Statistics - Theory and Methods 41(20), 3722–3738.
Rocha, G. H. M. A., Loschi, R. H. & Arellano-Valle, R. B. (2013), ‘Inference in flexible families of distributions with normal kernel’, Statistics 47(6), 1184– 1206.
Salinas, H. S., Martínez-Flórez, G. & Moreno-Arenas, G. (2013), ‘Censored bimodal symmetric-asymmetric alpha-power model’, Revista Colombiana de Estadística 36(2), 287–303.
Sanhueza, A., Leiva, V. & Balakrishnan, N. (2008), ‘The generalized Birnbaum- Saunders distribution and its theory, methodology, and application’, Communications in Statistics - Theory and Methods 37(5), 645–670
Sanhueza, A., Leiva, V. & López-Kleine, L. (2011), ‘On the Student-t mixture inverse gaussian model with an application to protein production’, Revista Colombiana de Estadística 34(1), 177–195.
Shams, H. S. & Alamatsaz, M. H. (2013), ‘Alpha-skew-Laplace distribution’, Statistics & Probability Letters 83(3), 774–782.
Torres-Avilés, F. J., Icaza, G. & Arellano-Valle, R. B. (2012), ‘An extension to the scale mixture of normals for bayesian small-area estimation’, Revista Colombiana de Estadística 35(2), 185–204.
Varadhan, R. & Gilbert, P. D. (2009), ‘BB: An R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function’, Journal of Statistical Software 32(4), 1–26.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Emmanuel Afuecheta, Idika E. Okorie, Adnan Bakather, Alawi Abdulrahman Hasan Alsaggaf, Saralees Nadarajah. (2024). Modeling of Stock Price Indices from Five Gulf Cooperation Council (GCC) Economies. Computational Economics, https://doi.org/10.1007/s10614-024-10821-z.
2. Arturo Tozzi, James F. Peters, Mehmet Niyazi Çankaya. (2018). The informational entropy endowed in cortical oscillations. Cognitive Neurodynamics, 12(5), p.501. https://doi.org/10.1007/s11571-018-9491-3.
3. Najme Sharifipanah, Rahim Chinipardaz, Gholam Ali Parham. (2020). A new class of weighted bimodal distribution with application to gamma-ray burst duration data. Journal of Applied Statistics, 47(13-15), p.2785. https://doi.org/10.1080/02664763.2020.1815669.
4. Anderson Ara, Francisco Louzada. (2022). Alpha Skew Gaussian Naïve Bayes Classifier. International Journal of Information Technology & Decision Making, 21(01), p.441. https://doi.org/10.1142/S0219622021500644.
5. Roberto Vila, Victor Serra, Mehmet Niyazi Çankaya, Felipe Quintino. (2024). A general class of trimodal distributions: properties and inference. Journal of Applied Statistics, 51(8), p.1446. https://doi.org/10.1080/02664763.2023.2207785.
6. Mehmet Niyazi Çankaya, Jan Korbel. (2017). On statistical properties of Jizba–Arimitsu hybrid entropy. Physica A: Statistical Mechanics and its Applications, 475, p.1. https://doi.org/10.1016/j.physa.2017.02.009.
7. Emrah Altun, Hüseyin Tatlıdil, Gamze Özel. (2019). Conditional ASGT-GARCH Approach to Value-at-Risk. Iranian Journal of Science and Technology, Transactions A: Science, 43(1), p.239. https://doi.org/10.1007/s40995-018-0484-1.
8. Mehmet Niyazi Çankaya, Abdullah Yalçınkaya, Ömer Altındaǧ, Olcay Arslan. (2019). On the robustness of an epsilon skew extension for Burr III distribution on the real line. Computational Statistics, 34(3), p.1247. https://doi.org/10.1007/s00180-018-0859-y.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2015 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).