Published
A Trinomial Difference Distribution
Una distribución de diferencia trinomial
DOI:
https://doi.org/10.15446/rce.v39n1.55131Keywords:
Binomial Distribution, Discrete Distribution, Maximum Likelihood Estimate, Moment Estimate, Poisson Distribution, Trinomial Distribution (en)Distribución binomial, Distribución discretos, Estimación de máxima verosimilitud, Momento estimar, Distribución de Poisson, Distribución binomial. (es)
A trinomial difference distribution is defined and its distributional properties are illustrated. This distribution present the binomial difference distribution as a special case. The moment estimators and maximum likelihood estimators of the trinomial difference distribution are compared via simulation study. Two applications are modeled with the trinomial difference distribution and compared with other possible distributions.
Una distribución de diferencia trinomial se define en este artículo así como sus propiedades distribucionales. Esta distribución cuenta con la distribución de diferencia binomial como un caso particular. Los estimadores de momentos y de máxima verosimilitud son comparados vía un estudio de simulación. Dos aplicaciones son modelados con la distribución diferencia trinomial y se comparan con otras distribuciones posibles.
1King Saud University, College of Sciences, Department of Statistics and Operations Research, Riyadh, Saudi Arabia. Assistant Professor. Email: maomair@ksu.edu.sa
2King Saud University, College of Sciences, Department of Statistics and Operations Research, Riyadh, Saudi Arabia. Professor. Email: Alzaid@ksu.edu.sa
3Prince Sattam Bin Abdulaziz University, College of Sciences and Humanities, Department of Mathematics, Hotat Bani Tamim, Saudi Arabia. Assistant Professor. Email: o.odhah@psau.edu.sa
A trinomial difference distribution is defined and its distributional properties are illustrated. This distribution present the binomial difference distribution as a special case. The moment estimators and maximum likelihood estimators of the trinomial difference distribution are compared via simulation study. Two applications are modeled with the trinomial difference distribution and compared with other possible distributions.
Key words: Binomial Distribution, Discrete Distribution, Maximum Likelihood Estimate, Moment Estimate, Poisson Distribution, Trinomial Distribution.
Una distribución de diferencia trinomial se define en este artículo así como sus propiedades distribucionales. Esta distribución cuenta con la distribución de diferencia binomial como un caso particular. Los estimadores de momentos y de máxima verosimilitud son comparados vía un estudio de simulación. Dos aplicaciones son modelados con la distribución diferencia trinomial y se comparan con otras distribuciones posibles.
Palabras clave: distribución binomial, distribución discretos, estimación de máxima verosimilitud, momento estimar, distribución de Poisson, distribución binomial.
Texto completo disponible en PDF
References
1. Alzaid, A. A. & Omair, M. A. (2010), 'On the poisson difference distribution inference and applications', Bulletin of the Malaysian Mathematical Sciences Society 8(33), 17-45.
2. Alzaid, A. A. & Omair, M. A. (2012), 'An extended binomial distribution with applications', Communications in Statistics-Theory and Methods 41(19), 3511-3527.
3. Alzaid, A. A. & Omair, M. A. (2014), 'Poisson difference integer valued autoregressive model of order one', Bulletin of the Malaysian Mathematical Sciences Society 2(37), 465-485.
4. Bakouch, H., Kachour, M. & Nadarajah, S. (2013), An extended Poisson distribution. Working paper or preprint. *https://hal.archives-ouvertes.fr/hal-00959426
5. Castro, G. de (1952), 'Note on differences of bernoulli and poisson variables', Portugaliae mathematica 11(4), 173-175.
6. Inusah, S. & Kozubowski, T. J. (2006), 'A discrete analogue of the laplace distribution', Journal of statistical planning and inference 136(3), 1090-1102.
7. Karlis, D. & Ntzoufras, I. (2006), 'Bayesian analysis of the differences of count data', Statistics in medicine 25(11), 1885-1905.
8. Karlis, D. & Ntzoufras, I. (2009), 'Bayesian modelling of football outcomes: using the skellam's distribution for the goal difference', IMA Journal of Management Mathematics 20(2), 133-145.
9. Kemp, A. W. (1997), 'Characterizations of a discrete normal distribution', Journal of Statistical Planning and Inference 63(2), 223-229.
10. Kotz, S., Johnson, N. & Kemp, A. (1992), Univariate Discrete Distributions, 2 edn, John Wiley & Sons, Inc., New York.
11. Ong, S., Shimizu, K. & Min Ng, C. (2008), 'A class of discrete distributions arising from difference of two random variables', Computational Statistics & Data Analysis 52(3), 1490-1499.
12. Skellam, J. G. (1946), 'The frequency distribution of the difference between two poisson variates belonging to different populations', Journal of the Royal Statistical Society. Series A 109(3), 296.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv39n1a01,
AUTHOR = {A. Omair, Maha and Alzaid, Abdulhamid and Odhah, Omalsad},
TITLE = {{A Trinomial Difference Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2016},
volume = {39},
number = {1},
pages = {1-15}
}
References
Alzaid, A. A. & Omair, M. A. (2010), ‘On the poisson difference distribution inference and applications’, Bulletin of the Malaysian Mathematical Sciences Society 8(33), 17–45.
Alzaid, A. A. & Omair, M. A. (2012), ‘An extended binomial distribution with applications’, Communications in Statistics-Theory and Methods 41(19), 3511–3527.
Alzaid, A. A. & Omair, M. A. (2014), ‘Poisson difference integer valued autoregressive model of order one’, Bulletin of the Malaysian Mathematical Sciences Society 2(37), 465–485.
Bakouch, H., Kachour, M. & Nadarajah, S. (2013), An extended Poisson distribution. Working paper or preprint. *https://hal.archives-ouvertes.fr/hal-00959426
Castro, G. (1952), ‘Note on differences of bernoulli and poisson variables’, Portugaliae mathematica 11(4), 173–175.
Inusah, S. & Kozubowski, T. J. (2006), ‘A discrete analogue of the laplace distribution’, Journal of statistical planning and inference 136(3), 1090–1102.
Karlis, D. & Ntzoufras, I. (2006), ‘Bayesian analysis of the differences of count data’, Statistics in medicine 25(11), 1885–1905.
Karlis, D. & Ntzoufras, I. (2009), ‘Bayesian modelling of football outcomes: using the skellam’s distribution for the goal difference’, IMA Journal of Management Mathematics 20(2), 133–145.
Kemp, A. W. (1997), ‘Characterizations of a discrete normal distribution’, Journal of Statistical Planning and Inference 63(2), 223–229.
Kotz, S., Johnson, N. & Kemp, A. (1992), Univariate Discrete Distributions, 2 edn, John Wiley & Sons, Inc., New York.
Ong, S., Shimizu, K. & Min Ng, C. (2008), ‘A class of discrete distributions arising from difference of two random variables’, Computational Statistics & Data Analysis 52(3), 1490–1499.
Skellam, J. G. (1946), ‘The frequency distribution of the difference between two poisson variates belonging to different populations’, Journal of the Royal Statistical Society. Series A 109(3), 296.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Huaping Chen, Zifei Han, Fukang Zhu. (2025). A trinomial difference autoregressive process for the bounded ℤ‐valued time series. Journal of Time Series Analysis, 46(1), p.152. https://doi.org/10.1111/jtsa.12762.
2. Maha A. Omair, Ghadah A. Alomani, Abdulhamid A. Alzaid. (2022). Bivariate Distributions on Z2. Bulletin of the Malaysian Mathematical Sciences Society, 45(S1), p.425. https://doi.org/10.1007/s40840-022-01318-9.
3. Huaping Chen, Jiayue Zhang, Fukang Zhu. (2023). A trinomial difference autoregressive model and its applications. Stat, 12(1) https://doi.org/10.1002/sta4.596.
4. Huaping Chen. (2025). A novel bounded ℤ-valued autoregressive model with its application on crime data. Journal of Statistical Computation and Simulation, 95(2), p.408. https://doi.org/10.1080/00949655.2024.2427360.
5. Dimitris Karlis, Naushad Mamode Khan. (2023). Models for Integer Data. Annual Review of Statistics and Its Application, 10(1), p.297. https://doi.org/10.1146/annurev-statistics-032921-022516.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2016 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).