Published
Optimal Shrinkage Estimations for the Parameters of Exponential Distribution Based on Record Values
Estimación shrinkage de los parámetros de la distribución exponencial basada en valores record
DOI:
https://doi.org/10.15446/rce.v39n1.55137Keywords:
Exponential Distribution, Minimax Regret, Record Value, Risk Function, Shrinkage Estimator (en)Estimador shrinkage, Distribución exponencial, Minimax regret, Función de riesgo, Valor record. (es)
This paper studies shrinkage estimation after the preliminary test for the parameters of exponential distribution based on record values. The optimal value of shrinkage coefficients is also obtained based on the minimax regret criterion. The maximum likelihood, pre-test, and shrinkage estimators are compared using a simulation study. The results to estimate the scale parameter show that the optimal shrinkage estimator is better than the maximum likelihood estimator in all cases, and when the prior guess is near the true value, the pre-test estimator is better than shrinkage estimator. The results to estimate the location parameter show that the optimal shrinkage estimator is better than maximum likelihood estimator when a prior guess is close to the true value. All estimators are illustrated by a numerical example.
Este artículo estudia la estimación shrinkage posterior al test preliminar de los parámetros de la distribución exponencial basada en valores record. El valor óptimo de los coeficientes de shrinkage es obtenido también usando el criterio minimax regret. La máxima verosimilitud, pre-test, y los estimadores shrinkage son obtenidos usando estudios de simulación. Los resultados de la estimación del parámetro de escala muestran que el estimador shrinkage es major que el de máxima verosimilitud en todos los casos, y cuando el valor a priori es cercano del valor real, el estimador pre-test es mejor que el estimador shrinkage. Los resultados de estimación del parámetro de localización muestran que el estimador de shrinkage óptimo es major que el de máxima verosimilitud cuando el valor a priori es cercano al real. Todos los estimadores son ilustrados con un ejemplo numérico.
1Yazd University, Department of Statistics, Yazd, Iran. Assistant Professor. Email: hzaker@yazd.ac.ir
2Yazd University, Department of Statistics, Yazd, Iran. Assistant Professor. Email: aajafari@yazd.ac.ir
3Yazd University, Department of Statistics, Yazd, Iran. Student. Email: mkarimiz68@yahoo.com
This paper studies shrinkage estimation after the preliminary test for the parameters of exponential distribution based on record values. The optimal value of shrinkage coefficients is also obtained based on the minimax regret criterion. The maximum likelihood, pre-test, and shrinkage estimators are compared using a simulation study. The results to estimate the scale parameter show that the optimal shrinkage estimator is better than the maximum likelihood estimator in all cases, and when the prior guess is near the true value, the pre-test estimator is better than shrinkage estimator. The results to estimate the location parameter show that the optimal shrinkage estimator is better than maximum likelihood estimator when a prior guess is close to the true value. All estimators are illustrated by a numerical example.
Key words: Exponential Distribution, Minimax Regret, Record Value, Risk Function, Shrinkage Estimator.
Este artículo estudia la estimación shrinkage posterior al test preliminar de los parámetros de la distribución exponencial basada en valores record. El valor óptimo de los coeficientes de shrinkage es obtenido también usando el criterio minimax regret. La máxima verosimilitud, pre-test, y los estimadores shrinkage son obtenidos usando estudios de simulación. Los resultados de la estimación del parámetro de escala muestran que el estimador shrinkage es major que el de máxima verosimilitud en todos los casos, y cuando el valor a priori es cercano del valor real, el estimador pre-test es major que el estimador shrinkage. Los resultados de estimación del parámetro de localización muestran que el estimador de shrinkage óptimo es major que el de máxima verosimilitud cuando el valor a priori es cercano al real. Todos los estimadores son ilustrados con un ejemplo numérico.
Palabras clave: estimador shrinkage, distribución exponencial, minimax regret, función de riesgo, valor record.
Texto completo disponible en PDF
References
1. Ahsanullah, M. (1995), Record statistics, Nova Science Publishers Commack, New York.
2. Arnold, B., Balakrishnan, N. & Nagaraja, H. (1998), Records, John Wiley & Sons Inc, New York.
3. Balakrishnan, N. & Chan, P. S. (1994), 'Record values from Rayleigh and Weibull distributions and associated inference', National Institute of Standards and Technology Journal of Research, Special Publication, Proceedings of the Conference on Extreme Value Theory and Applications 866, 41-51.
4. Bancroft, T. A. (1944), 'On biases in estimation due to the use of preliminary tests of significance', The Annals of Mathematical Statistics 15(2), 190-204.
5. Bancroft, T. A. & Han, C. P. (1977), 'Inference based on conditional specification: a note and a bibliography', International Statistical Review 45, 117-127.
6. Bhattacharya, S. K. & Srivastava, V. K. (1974), 'A preliminary test procedure in life testing', Journal of the American Statistical Association 69(347), 726-729.
7. Chiou, P. (1990), 'Estimation of scale parameters for two exponential distributions', IEEE Transactions on Reliability 39(1), 106-109.
8. Chiou, P. & Han, C. P. (1995), 'Conditional interval estimation of the exponential location parameter following rejection of a pre-test', Communications in Statistics-Theory and Methods 24(6), 1481-1492.
9. Chiou, P. & Han, C. (1989), 'Shrinkage estimation of threshold parameter of the exponential distribution', IEEE transactions on reliability 38, 449-453.
10. Chiou, P. & Miao, W. (2005), 'Shrinkage estimation for the difference between exponential guarantee time parameters', Computational Statistics and Data Analysis 48(3), 489-507.
11. Dunsmore, I. R. (1983), 'The future occurrence of records', Annals of the Institute of Statistical Mathematics 35(1), 267-277.
12. Han, Chien-Pai, Rao, C. & Ravichandran, J. (1988), 'Inference based on conditional speclfication', Communications in Statistics-Theory and Methods 17(6), 1945-1964.
13. Inada, K. (1984), 'A minimax regret estimator of a normal mean after preliminary test', Annals of the Institute of Statistical Mathematics 36(1), 207-215.
14. Pandey, B. N. (1983), 'Shrinkage estimation of the exponential scale parameter', IEEE Transactions on Reliability 32(2), 203-205.
15. Pandey, B. N. (1997), 'Testimator of the scale parameter of the exponential distribution using LINEX loss function', Communications in Statistics-Theory and Methods 26(9), 2191-2202.
16. Prakash, G. & Singh, D. (2008), 'Shrinkage estimation in exponential type-II censored data under LINEX loss', Journal of the Korean Statistical Society 37(1), 53-61.
17. Zakerzadeh, H. & Karimi, M. (2013), Preliminary test estimation of exponential distribution based on record values, 'The 9th Seminar on Probability and Stochastic Processes, Iran, Zahedan'.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv39n1a03,
AUTHOR = {Zakerzadeh, Hojatollah and Jafari, Ali Akbar and Karimi, Mahdieh},
TITLE = {{Optimal Shrinkage Estimations for the Parameters of Exponential Distribution Based on Record Values}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2016},
volume = {39},
number = {1},
pages = {33-44}
}
References
Ahsanullah, M. (1995), Record statistics, Nova Science Publishers Commack, New York.
Arnold, B., Balakrishnan, N. & Nagaraja, H. (1998), Records, John Wiley & Sons Inc, New York.
Balakrishnan, N. & Chan, P. S. (1994), ‘Record values from Rayleigh and Weibull distributions and associated inference’, National Institute of Standards and Technology Journal of Research, Special Publication, Proceedings of the Conference on Extreme Value Theory and Applications 866, 41–51.
Bancroft, T. A. (1944), ‘On biases in estimation due to the use of preliminary tests of significance’, The Annals Bancroft, T. A. & Han, C. P. (1977), ‘Inference based on conditional specification: a note and a bibliography’, International Statistical Review 45, 117–127.
Bancroft, T. A. & Han, C. P. (1977), ‘Inference based on conditional specification: a note and a bibliography’, International Statistical Review 45, 117–127.
Bhattacharya, S. K. & Srivastava, V. K. (1974), ‘A preliminary test procedure in life testing’, Journal of the American Statistical Association 69(347), 726–729.
Chiou, P. (1990), ‘Estimation of scale parameters for two exponential distributions’, IEEE Transactions on Reliability 39(1), 106–109.
Chiou, P. & Han, C. (1989), ‘Shrinkage estimation of threshold parameter of the exponential distribution’, IEEE transactions on reliability 38, 449–453.
Chiou, P. & Han, C. P. (1995), ‘Conditional interval estimation of the exponential location parameter following rejection of a pre-test’, Communications in Statistics-Theory and Methods 24(6), 1481–1492.
Chiou, P. & Miao, W. (2005), ‘Shrinkage estimation for the difference between exponential guarantee time parameters’, Computational Statistics and Data Analysis 48(3), 489–507.
Dunsmore, I. R. (1983), ‘The future occurrence of records’, Annals of the Institute of Statistical Mathematics 35(1), 267–277.
Han, C.-P., Rao, C. & Ravichandran, J. (1988), ‘Inference based on conditional speclfication’, Communications in Statistics-Theory and Methods 17(6), 1945–1964.
Inada, K. (1984), ‘A minimax regret estimator of a normal mean after preliminary test’, Annals of the Institute of Statistical Mathematics 36(1), 207–215.
Pandey, B. N. (1983), ‘Shrinkage estimation of the exponential scale parameter’, IEEE Transactions on Reliability 32(2), 203–205.
Pandey, B. N. (1997), ‘Testimator of the scale parameter of the exponential distribution using LINEX loss function’, Communications in Statistics-Theory and Methods 26(9), 2191–2202.
Prakash, G. & Singh, D. (2008), ‘Shrinkage estimation in exponential type-II censored data under LINEX loss’, Journal of the Korean Statistical Society 37(1), 53–61.
Zakerzadeh, H. & Karimi, M. (2013), Preliminary test estimation of exponential distribution based on record values, in ‘The 9th Seminar on Probability and Stochastic Processes, Iran, Zahedan’. of Mathematical Statistics 15(2), 190–204.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Sundos Bader Habeeb, Fatima K. Abdullah, Rehab Noori Shalan, Amal S. Hassan, Ehab M. Almetwally, Fatimah M. Alghamdi, Sara Mohamed Ahmed Alsheikh, Md Moyazzem Hossain. (2024). Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation. Alexandria Engineering Journal, 98, p.356. https://doi.org/10.1016/j.aej.2024.04.042.
2. Ayman Baklizi. (2017). Preliminary Test Estimation of the Threshold in the Two-Parameter Exponential Distribution Based on Records and Minimax Regret Significance Levels. American Journal of Mathematical and Management Sciences, 36(3), p.196. https://doi.org/10.1080/01966324.2017.1310005.
3. N. J. Hassan, J. Mahdi Hadad, A. Hawad Nasar. (2020). Bayesian Shrinkage Estimator of Burr XII Distribution. International Journal of Mathematics and Mathematical Sciences, 2020, p.1. https://doi.org/10.1155/2020/7953098.
4. Housila P. Singh, Harshada Joshi, Gajendra K. Vishwakarma. (2024). Shrinkage estimation of θα in gamma density G(1/θ, p) using prior information. Journal of Engineering Mathematics, 144(1) https://doi.org/10.1007/s10665-023-10329-9.
5. Housila P. Singh, Gajendra K. Vishwakarma, Harshada Joshi, Shubham Gupta. (2024). Shrinkage estimation for square of location parameter of the exponential distribution with known coefficient of variation. Journal of Computational and Applied Mathematics, 437, p.115489. https://doi.org/10.1016/j.cam.2023.115489.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2016 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).