Published
A Two Parameter Discrete Lindley Distribution
Distribución Lindley de dos parámetros
DOI:
https://doi.org/10.15446/rce.v39n1.55138Keywords:
Characterization, Discretized version, Estimation, Geometric distribution, Mean residual life, Mixture, Negative moments (en)Caracterización, Estimación, Distribución Geométrica, Momentos negativos, Mixtura, Versión discretizada, Vida media residual (es)
In this article we have proposed and discussed a two parameter discrete Lindley distribution. The derivation of this new model is based on a two step methodology i.e. mixing then discretizing, and can be viewed as a new generalization of geometric distribution. The proposed model has proved itself as the least loss of information model when applied to a number of data sets (in an over and under dispersed structure). The competing models such as Poisson, Negative binomial, Generalized Poisson and discrete gamma distributions are the well known standard discrete distributions. Its Lifetime classification, kurtosis, skewness, ascending and descending factorial moments as well as its recurrence relations, negative moments, parameters estimation via maximum likelihood method, characterization and discretized bi-variate case are presented.
En este artículo propusimos y discutimos la distribución Lindley de dos parámetros. La obtención de este Nuevo modelo está basada en una metodología en dos etapas: mezclar y luego discretizar, y puede ser vista como una generalización de una distribución geométrica. El modelo propuesto demostró tener la menor pérdida de información al ser aplicado a un cierto número de bases de datos (con estructuras de supra y sobredispersión). Los modelos estándar con los que se puede comparar son las distribuciones Poisson, Binomial Negativa, Poisson Generalizado y Gamma discrete.Su clasificación de tiempo de vida, kurtosis, sesgamiento, momentos factorials ascendientes y descendientes, al igual que sus relaciones de recurrencia, momentos negativos, estimación de parámetros via máxima verosimilitud, caracterización y discretización del caso bivariado son presentados.
1Government Postgraduate College, Department of Statistics, Rawalakot, Pakistan. Professor. Email: taskho2000@yahoo.com
2King Abdulaziz University, Faculty of Sciences, Department of Statistics, Jeddah, Saudi Arabia. Professor. Email: aslam_ravian@hotmail.com
3National College of Business Administration and Economics, Lahore, Pakistan. Professor. Email: drmunir@ncbae.edu.pk
In this article we have proposed and discussed a two parameter discrete Lindley distribution. The derivation of this new model is based on a two step methodology i.e. mixing then discretizing, and can be viewed as a new generalization of geometric distribution. The proposed model has proved itself as the least loss of information model when applied to a number of data sets (in an over and under dispersed structure). The competing models such as Poisson, Negative binomial, Generalized Poisson and discrete gamma distributions are the well known standard discrete distributions. Its Lifetime classification, kurtosis, skewness, ascending and descending factorial moments as well as its recurrence relations, negative moments, parameters estimation via maximum likelihood method, characterization and discretized bi-variate case are presented.
Key words: Characterization, Discretized version, Estimation, Geometric distribution, Mean residual life, Mixture, Negative moments.
En este artículo propusimos y discutimos la distribución Lindley de dos parámetros. La obtención de este Nuevo modelo está basada en una metodología en dos etapas: mezclar y luego discretizar, y puede ser vista como una generalización de una distribución geométrica. El modelo propuesto demostró tener la menor pérdida de información al ser aplicado a un cierto número de bases de datos (con estructuras de supra y sobredispersión). Los modelos estándar con los que se puede comparar son las distribuciones Poisson, Binomial Negativa, Poisson Generalizado y Gamma discrete.Su clasificación de tiempo de vida, kurtosis, sesgamiento, momentos factorials ascendientes y descendientes, al igual que sus relaciones de recurrencia, momentos negativos, estimación de parámetros via máxima verosimilitud, caracterización y discretización del caso bivariado son presentados.
Palabras clave: caracterización, estimación, distribución Geométrica, momentos negativos, mixtura, versión discretizada, vida media residual.
Texto completo disponible en PDF
References
1. Abouammoh, A. & Mashhour, A. (1981), 'A note on the unimodality of discrete distributions', Communication in Statistics Theory and Methods 10(13), 1345-1354.
2. Al-Huniti, A. & Al-Dayian, G. (2012), 'Discrete burr type-iii distribution', American Journal of Mathematics and Statistic 2(5), 145-152.
3. Chakraborty, S. & Chakravarty, D. (2012), 'Discrete gamma distributions: properties and parameters estimations', Communication in Statistics Theory and Methods 41(18), 3301-3324.
4. D\breveeniz, E. & Ojeda, E. (2011), 'The discrete lindley distribution: properties and application', Journal of Statistical Computation and Simulation 81(11), 1405-1416.
5. Hussain, T. & Ahmad, M. (2012), Discrete inverse gamma distribution, 'Official Statistics and its Impact on Good Governance and Economy of Pakistan', 9th International Conference on Statistical Sciences, Islamic Countries Society of Statistical Sciences, Lahore, Pakistan, p. 381-394.
6. Hussain, T. & Ahmad, M. (2014), 'Discrete inverse rayleigh distribution', Pakistan Journal of Statistics 3(2), 203-222.
7. Inusah, S. & Kozubowski, J. (2006), 'A discrete analogue of the laplace distribution', Journal of Statistical Planning and Inference 136, 1090-1102.
8. Jazi, M., Lai, C. & Alamatsaz, M. (2010), 'A discrete inverse weibull distribution and estimation of its parameters', Statistical Methodology 7, 121-132.
9. Johnson, N., Kotz, S. & Kemp, A. (1992), Univariate Discrete Distributions, 2 edn, John Wiley and Sons, New York.
10. Kemp, A. (1997), 'Statistical methodology', Journal of Statistical Planning and Inference 63, 223-229.
11. Kemp, A. (2004), 'Classes of discrete lifetime distributions', Communications in Statistics Theory and Methods 33(12), 3069- 3093.
12. Kemp, A. (2006), 'The discrete half-normal distribution', Advances in mathematical and statistical modeling 9, 353-360.
13. Kielson, J. & Gerber, H. (1971), 'Some results for discrete unimodality', Journal of American Statistical Association 66, 386-389.
14. Kozubowski, J. & Inusah, S. (2006), 'A skew laplace distribution on integers', AISM 58, 555-571.
15. Krishna, H. & Pundir, P. (2007), 'Discrete maxwell distribution'. http://interstat.statjournals.net/YEAR/2007/articles/0711003.pdf (accessed in July 2010).
16. Krishna, H. & Pundir, P. (2009), 'Discrete burr and discrete pareto distributions', Statistical Methodology 6, 177-188.
17. Nakagawa, T. & Osaki, S. (1975), 'The discrete weibull distribution', IEEE Transactions on Reliability 24(5), 300-301.
18. Nekoukhou, V., Alamatsaz, M. & Bidram, H. (2012), 'A discrete analog of the generalized exponential distribution', Communication in Statistics Theory and Methods 41(11), 2000-2013.
19. Rainville, E. (1965), Special Functions, The Macmillan Company, New York.
20. Roy, D. (2003), 'Discrete normal distribution', Communication in Statistics Theory and Methods 32(10), 1871-1883.
21. Roy, D. (2004), 'Discrete rayleigh distribution', IEEE Transactions on Reliability 52(2), 255-260.
22. Szablowski, P. (2001), 'Discrete normal distribution and its relationship with jacobi theta functions', Statistics and Probability Letters 52, 289-299.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv39n1a04,
AUTHOR = {Hussain, Tassaddaq and Aslam, Muhammad and Ahmad, Munir},
TITLE = {{A Two Parameter Discrete Lindley Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2016},
volume = {39},
number = {1},
pages = {45-61}
}
References
Abouammoh, A. & Mashhour, A. (1981), ‘A note on the unimodality of discrete distributions’, Communication in Statistics Theory and Methods 10(13), 1345–1354.
Al-Huniti, A. & Al-Dayian, G. (2012), ‘Discrete burr type-iii distribution’, American Journal of Mathematics and Statistic 2(5), 145–152.
Chakraborty, S. & Chakravarty, D. (2012), ‘Discrete gamma distributions: Properties and parameters estimations’, Communication in Statistics Theory and Methods 41(18), 3301–3324.
Deniz, E. & Ojeda, E. (2011), ‘The discrete lindley distribution: Properties and application’, Journal of Statistical Computation and Simulation 81(11), 1405–1416.
Hussain, T. & Ahmad, M. (2012), Discrete inverse gamma distribution, in M. Ahmad,ed., ‘Official Statistics and its Impact on Good Governance and Economy of Pakistan’, 9th International Conference on Statistical Sciences, Islamic Countries Society of Statistical Sciences, Lahore, Pakistan, pp. 381–394.
Hussain, T. & Ahmad, M. (2014), ‘Discrete inverse rayleigh distribution’, Pakistan Journal of Statistics 3(2), 203–222.
Inusah, S. & Kozubowski, J. (2006), ‘A discrete analogue of the laplace distribution’, Journal of Statistical Planning and Inference 136, 1090–1102.
Jazi, M., Lai, C. & Alamatsaz, M. (2010), ‘A discrete inverse weibull distribution and estimation of its parameters’, Statistical Methodology 7, 121–132.
Johnson, N., Kotz, S. & Kemp, A. (1992), Univariate Discrete Distributions, 2 edn, John Wiley and Sons, New York.
Kemp, A. (1997), ‘Statistical methodology’, Journal of Statistical Planning and Inference 63, 223–229.
Kemp, A. (2004), ‘Classes of discrete lifetime distributions’, Communications in Statistics Theory and Methods 33(12), 3069– 3093.
Kemp, A. (2006), ‘The discrete half-normal distribution’, Advances in mathematical and statistical modeling 9, 353–360.
Kielson, J. & Gerber, H. (1971), ‘Some results for discrete unimodality’, Journal of American Statistical Association 66, 386–389.
Kozubowski, J. & Inusah, S. (2006), ‘A skew laplace distribution on integers’, AISM 58, 555–571.
Krishna, H. & Pundir, P. (2007), ‘Discrete maxwell distribution’. http://interstat.statjournals.net/YEAR/2007/articles/0711003.pdf (accessed in July 2010).
Krishna, H. & Pundir, P. (2009), ‘Discrete burr and discrete pareto distributions’, Statistical Methodology 6, 177–188.
Nakagawa, T. & Osaki, S. (1975), ‘The discrete weibull distribution’, IEEE Transactions on Reliability 24(5), 300–301.
Nekoukhou, V., Alamatsaz, M. & Bidram, H. (2012), ‘A discrete analog of the generalized exponential distribution’, Communication in Statistics Theory and Methods 41(11), 2000–2013.
Rainville, E. (1965), Special Functions, The Macmillan Company, New York.
Roy, D. (2003), ‘Discrete normal distribution’, Communication in Statistics Theory and Methods 32(10), 1871–1883.
Roy, D. (2004), ‘Discrete rayleigh distribution’, IEEE Transactions on Reliability 52(2), 255–260.
Szablowski, P. (2001), ‘Discrete normal distribution and its relationship with jacobi theta functions’, Statistics and Probability Letters 52, 289–299.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Walid Emam, Yusra Tashkandy, G.G. Hamedani, Mohamed Abdelhamed Shehab, Mohamed Ibrahim, Haitham M. Yousof. (2023). A Novel Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero-Inflated Real Data with Bayesian, and Non-Bayesian Inference. Mathematics, 11(5), p.1125. https://doi.org/10.3390/math11051125.
2. M. S. Eliwa, Emrah Altun, M. El-Dawoody, M. El-Morshedy. (2020). A New Three-Parameter Discrete Distribution With Associated INAR(1) Process and Applications. IEEE Access, 8, p.91150. https://doi.org/10.1109/ACCESS.2020.2993593.
3. Hend S. Shahen, Mohamed S. Eliwa, Mahmoud El-Morshedy. (2024). Exploring the Potential of the Kumaraswamy Discrete Half-Logistic Distribution in Data Science Scanning and Decision-Making. Annals of Data Science, https://doi.org/10.1007/s40745-024-00558-9.
4. M. El-Morshedy, M. S. Eliwa, Emrah Altun. (2020). Discrete Burr-Hatke Distribution With Properties, Estimation Methods and Regression Model. IEEE Access, 8, p.74359. https://doi.org/10.1109/ACCESS.2020.2988431.
5. Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify. (2022). The discrete power-Ailamujia distribution: properties, inference, and applications. AIMS Mathematics, 7(5), p.8344. https://doi.org/10.3934/math.2022465.
6. Mohamed S. Eliwa, Muhammad H. Tahir, Muhammad A. Hussain, Bader Almohaimeed, Afrah Al-Bossly, Mahmoud El-Morshedy. (2023). Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests. Mathematics, 11(13), p.2929. https://doi.org/10.3390/math11132929.
7. Thanasate Akkanphudit. (2023). The Discrete Gompertz–Weibull–Fréchet Distribution: Properties and Applications. Lobachevskii Journal of Mathematics, 44(9), p.3663. https://doi.org/10.1134/S1995080223090032.
8. Mohamed Ali Ghorbel, Rahmouna Mecene. (2023). On the Bivariate Generalized Gamma-Lindley Distribution. Mathematica Slovaca, 73(2), p.511. https://doi.org/10.1515/ms-2023-0038.
9. Ahmed Z. Afify, Muhammad Ahsan-ul-Haq, Hassan M. Aljohani, Abdulaziz S. Alghamdi, Ayesha Babar, Héctor W. Gómez. (2022). A new one-parameter discrete exponential distribution: Properties, inference, and applications to COVID-19 data. Journal of King Saud University - Science, 34(6), p.102199. https://doi.org/10.1016/j.jksus.2022.102199.
10. Mahmoud El-Morshedy. (2022). A Discrete Linear-Exponential Model: Synthesis and Analysis with Inference to Model Extreme Count Data. Axioms, 11(10), p.531. https://doi.org/10.3390/axioms11100531.
11. Muhammed Irshad, Christophe Chesneau, Veena D’cruz, Radhakumari Maya. (2021). Discrete Pseudo Lindley Distribution: Properties, Estimation and Application on INAR(1) Process. Mathematical and Computational Applications, 26(4), p.76. https://doi.org/10.3390/mca26040076.
12. Nagla Yahia, Hala Fawzy, Hanan Baaqeel. (2021). Discrete Type II Topp Leone Inverted Weibull Distribution: Properties and Estimation. Journal of Computational and Theoretical Nanoscience, 18(6), p.1744. https://doi.org/10.1166/jctn.2021.9733.
13. Mohamed Eliwa, Mahmoud El-Morshedy, Hend Shahen. (2023). Modelling dispersed count data under various shapes of failure rates: A discrete probability analogue of odd Lomax generator. Filomat, 37(18), p.6177. https://doi.org/10.2298/FIL2318177E.
14. Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Mohamed S. Eliwa. (2022). A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: Properties and various estimation techniques with inference. AIMS Mathematics, 7(2), p.1726. https://doi.org/10.3934/math.2022099.
15. HASSAN S BAKOUCH. (2018). A weighted negative binomial Lindley distribution with applications to dispersed data. Anais da Academia Brasileira de Ciências, 90(3), p.2617. https://doi.org/10.1590/0001-3765201820170733.
16. Mohamed Ahmed Mosilhy. (2023). Discrete Erlang-2 distribution and its application to leukemia and COVID-19. AIMS Mathematics, 8(5), p.10266. https://doi.org/10.3934/math.2023520.
17. Mohamed El-Dawoody, Mohamed S. Eliwa, Mahmoud El-Morshedy. (2023). An Extension of the Poisson Distribution: Features and Application for Medical Data Modeling. Processes, 11(4), p.1195. https://doi.org/10.3390/pr11041195.
18. Masoumeh Shirozhan, Naushad Ali Mamode Khan, Hassan S. Bakouch. (2023). An INAR(1) Time Series Model via a Modified Discrete Burr–Hatke with Medical Applications. Iranian Journal of Science, 47(1), p.121. https://doi.org/10.1007/s40995-022-01387-2.
19. Mohamed Ibrahim, M. Masoom Ali, Haitham M. Yousof. (2023). The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods. Annals of Data Science, 10(4), p.1069. https://doi.org/10.1007/s40745-021-00327-y.
20. Hassan M. Aljohani, Muhammad Ahsan-ul-Haq, Javeria Zafar, Ehab M. Almetwally, Abdulaziz S. Alghamdi, Eslam Hussam, Abdisalam Hassan Muse. (2023). Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach. Scientific Reports, 13(1) https://doi.org/10.1038/s41598-023-39183-6.
21. Mohamed S. Eliwa, Mahmoud El-Morshedy, Haitham M. Yousof. (2022). A Discrete Exponential Generalized-G Family of Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and Agriculture Data. Mathematics, 10(18), p.3348. https://doi.org/10.3390/math10183348.
22. Howaida Elsayed, Mohamed Hussein. (2025). A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application. Entropy, 27(4), p.409. https://doi.org/10.3390/e27040409.
23. Festus C. Opone, Elvis A. Izekor, Innocent U. Akata, Francis E. U. Osagiede. (2020). A Discrete Analogue of the Continuous Marshall-Olkin Weibull Distribution with Application to Count Data. Earthline Journal of Mathematical Sciences, , p.415. https://doi.org/10.34198/ejms.5221.415428.
24. M. El-Morshedy, M. S. Eliwa, Abhishek Tyagi. (2022). A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data. Journal of Applied Statistics, 49(11), p.2928. https://doi.org/10.1080/02664763.2021.1928018.
25. M. S. Eliwa, Ziyad Ali Alhussain, M. El-Morshedy. (2020). Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications. Mathematics, 8(3), p.358. https://doi.org/10.3390/math8030358.
26. Mohamed Aboraya, Haitham M. Yousof, G.G. Hamedani, Mohamed Ibrahim. (2020). A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods. Mathematics, 8(10), p.1648. https://doi.org/10.3390/math8101648.
27. Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy. (2025). A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data. AIMS Mathematics, 10(3), p.6069. https://doi.org/10.3934/math.2025277.
28. Mahmoud El-Morshedy, Mohamed S. Eliwa, Abhishek Tyagi, Hend S. Shahen. (2025). A discrete extension of the Lindley distribution for health and sustainability data: Theoretical insights and decision-making applications. Partial Differential Equations in Applied Mathematics, 13, p.101013. https://doi.org/10.1016/j.padiff.2024.101013.
29. Mriganka Mouli Choudhury, Rahul Bhattacharya, Sudhansu S. Maiti. (2022). Estimation of P(X ≤ Y) for discrete distributions with non-identical support. Statistics in Transition New Series, 23(3), p.43. https://doi.org/10.2478/stattrans-2022-0029.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2016 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).