Published

2017-07-01

Entropy Estimation From Ranked Set Samples With Application to Test of Fit

Estimación de entropía de muestras de rango ordenado con aplicación a pruebas de ajuste

DOI:

https://doi.org/10.15446/rce.v40n2.58944

Keywords:

Judgment ranking, Goodness of fit test, Entropy estimation (en)
Bondad de ajuste, Estimación de entropía, Ranking de juicios (es)

Downloads

Authors

  • Ehsan Zamanzade Department of Statistics, University of Isfahan, Isfahan, Iran
  • Mahdi Mahdizadeh Hakim Sabzevari University
This article deals with entropy estimation using ranked set sampling (RSS). Some estimators are developed based on the empirical distribution function and its nonparametric maximum likelihood competitor. The suggested entropy estimators have smaller root mean squared errors than the other entropy estimators in the literature. The proposed estimators are then used to construct goodness of fit tests for inverse Gaussian distribution.
Este artículo trata sobre la estimación de entropía usando muestras de rango ordenado (RSS). Algunos estimadores se desarrollan con base en distribuciones empíricas y si estimación no paramétrica de máxima verosimilitud. Los estimadores de entropía sugeridos tienen menor raíz del error de cuadrados medios  que otros reportados en literatura. Los estimadores propuestos son usados para construir pruebas de bondad de ajuste para distribuciones inversas Gaussianas.

References

Chen, H., Stasny, E. A. & Wolfe, D. A. (2005), 'Ranked set sampling for efficient estimation of a population proportion', Statistics in Medicine 24, 3319-3329.

Correa, J. C. (1995), 'A new estimator of entropy', Communications in Statistics-Theory Methods 24, 2439-2449.

Duembgen, L. & Zamanzade, E. (2013), 'Inference on a distribution function from ranked set samples', arXiv:1304.6950v3 [stat.ME].

Ebrahimi, N., Habibullah, M. & Soo_, E. (1994), 'Two measures of sample entropy', Statistics & Probability Letters 20, 225-234.

Frey, J., Ozturk, O. & Deshpande, J. (2007), 'Nonparametric tests for perfect judgment rankings', Journal of the American Statistical Association 102(48), 708-717.

Grzegorzewski, P. & Wieczorkowski, R. (1999), 'Entropy-based goodness-of-fit test for exponentiality', Communications in Statistics-Theory Methods 28, 1183-1202.

Haq, A., Brown, J., Moltchanova, E. & Al-Omari, A. (2014), 'Mixed ranked set sampling design', Journal of Applied Statistics 41, 2141-2156.

Howard, R. W., Jones, S. C., Mauldin, J. K. & Beal, R. H. (1982), 'Abundance, distribution and colony size estimates for reticulitermes spp. (isopter: Rhinotermitidae) in southern mississippi', Environmental Entomology 11, 1290-1293.

Huang, J. (1997), 'Asymptotic properties of the npmle of a distribution function based on ranked set samples', The Annals of Statistics 25(3), 1036-1049.

Kvam, P. H. (2003), 'Ranked set sampling based on binary water quality data with covariates', Journal of Agricultural, Biological and Environmental Statistics 8, 271-279.

Kvam, P. & Samaniego, F. (1994), 'Nonparametric maximum likelihood estimation based on ranked set samples', Journal of the American Statistical Association 89, 526-537.

MacEachern, S., Ozturk, O., Wolfe, D. & Stark, G. (2002), 'A new ranked set sample estimator of variance', Journal of the Royal Statistical Society: Series B. 64, 177-188.

Mahdizadeh, M. (2012), 'On the use of ranked set samples in entropy based test of fit for the laplace distribution', Revista Colombiana de Estadística 35(3), 443-455.

Mahdizadeh, M. & Arghami, N. (2009), 'Efficiency of ranked set sampling in entropy estimation and goodness-of-fit testing for the inverse gaussian law', Journal of Statistical Computation and Simulation 80, 761-774.

Mahdizadeh, M. & Zamanzade, E. (2016), 'Kernel-based estimation of P(X >Y) in ranked set sampling', Statistics and Operations Research Transactions (SORT) 40(2), 243-266.

McIntyre, G. A. (1952), 'A method for unbiased selective sampling using ranked set sampling', Australian Journal of Agricultural Research 3, 385-390.

Mudholkar, G. S. & Tian, L. (2002), 'An entropy characterization of the inverse gaussian distribution and related goodness-of-fit test', Journal of Statistical Planning and Inference 102, 211-221.

Murray, R. A., Ridout, M. S. & Cross, J. V. (2000), 'The use of ranked set sampling in spray deposit assessment', Aspects of Applied Biology 57, 141-146.

Muttlak, H. (1996), 'Pair rank set sampling', Biometrical Journal 38(7), 879-885.

Muttlak, H. (1997), 'Median ranked set sampling', Journal of Applied Statistical Sciences, 6, 245-255.

Nussbaum, B. D. & Sinha, B. K. (1997), Cost effective gasoline sampling using ranked set sampling, in 'Proceedings of the Section on Statistics and the Environment', American Statistical Association, pp. 83-87.

Ozturk, O., Bilgin, O. & Wolfe, D. A. (2005), 'Estimation of population mean and variance in flock management: a ranked set sampling approach in a finite population setting', Journal of Statistical Computation and Simulation 75, 905-919.

Perron, F. & Sinha, B. (2004), 'Estimation of variance based on a ranked set sample', Journal of Statistical Planning and Inference 120, 21-28.

Samawi, H., Abu-Daayeh, H. & Ahmed, S. (1996), 'Estimating the population mean using extreme ranked set sampling', Biometrical Journal 38, 577-586.

Sanhueza, A., Leiva, V. & López-Kleine, L. (2011), 'On the student-t mixture inverse gaussian model with an application to protein production', Revista Colombiana de Estadística 34(1), 177-195.

Shannon, C. E. (1948), 'A mathematical theory of communications', Bell System Technical Journal 27, 623-656.

Stokes, S. L. (1980), 'Estimation of variance using judgment ordered ranked set samples', Biometrics 36, 35-42.

Stokes, S. L. & Sager, T. W. (1988), 'Characterization of a ranked-set sample with application to estimating distribution functions', Journal of the American Statistical Association 83, 374-381.

Takahasi, K. & Wakimoto, K. (1968), 'On unbiased estimates of the population mean based on the sample stratified by means of ordering', Annals of the Institute of Statistical Mathematics 20, 1-31.

Vasicek, O. (1976), 'A test for normality based on sample entropy', Journal of Royal Statistical Society, Ser B 38, 54-59.

Zamanzade, E. & Vock, M. (2015), 'Variance estimation in ranked set sampling using a concomitant variable', Statistics & Probability Letters 105, 1-5.

How to Cite

APA

Zamanzade, E. and Mahdizadeh, M. (2017). Entropy Estimation From Ranked Set Samples With Application to Test of Fit. Revista Colombiana de Estadística, 40(2), 223–241. https://doi.org/10.15446/rce.v40n2.58944

ACM

[1]
Zamanzade, E. and Mahdizadeh, M. 2017. Entropy Estimation From Ranked Set Samples With Application to Test of Fit. Revista Colombiana de Estadística. 40, 2 (Jul. 2017), 223–241. DOI:https://doi.org/10.15446/rce.v40n2.58944.

ACS

(1)
Zamanzade, E.; Mahdizadeh, M. Entropy Estimation From Ranked Set Samples With Application to Test of Fit. Rev. colomb. estad. 2017, 40, 223-241.

ABNT

ZAMANZADE, E.; MAHDIZADEH, M. Entropy Estimation From Ranked Set Samples With Application to Test of Fit. Revista Colombiana de Estadística, [S. l.], v. 40, n. 2, p. 223–241, 2017. DOI: 10.15446/rce.v40n2.58944. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/58944. Acesso em: 19 jan. 2025.

Chicago

Zamanzade, Ehsan, and Mahdi Mahdizadeh. 2017. “Entropy Estimation From Ranked Set Samples With Application to Test of Fit”. Revista Colombiana De Estadística 40 (2):223-41. https://doi.org/10.15446/rce.v40n2.58944.

Harvard

Zamanzade, E. and Mahdizadeh, M. (2017) “Entropy Estimation From Ranked Set Samples With Application to Test of Fit”, Revista Colombiana de Estadística, 40(2), pp. 223–241. doi: 10.15446/rce.v40n2.58944.

IEEE

[1]
E. Zamanzade and M. Mahdizadeh, “Entropy Estimation From Ranked Set Samples With Application to Test of Fit”, Rev. colomb. estad., vol. 40, no. 2, pp. 223–241, Jul. 2017.

MLA

Zamanzade, E., and M. Mahdizadeh. “Entropy Estimation From Ranked Set Samples With Application to Test of Fit”. Revista Colombiana de Estadística, vol. 40, no. 2, July 2017, pp. 223-41, doi:10.15446/rce.v40n2.58944.

Turabian

Zamanzade, Ehsan, and Mahdi Mahdizadeh. “Entropy Estimation From Ranked Set Samples With Application to Test of Fit”. Revista Colombiana de Estadística 40, no. 2 (July 1, 2017): 223–241. Accessed January 19, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/58944.

Vancouver

1.
Zamanzade E, Mahdizadeh M. Entropy Estimation From Ranked Set Samples With Application to Test of Fit. Rev. colomb. estad. [Internet]. 2017 Jul. 1 [cited 2025 Jan. 19];40(2):223-41. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/58944

Download Citation

CrossRef Cited-by

CrossRef citations21

1. V. Ahrari, S. Baratpour, A. Habibirad, V. Fakoor. (2022). Goodness of fit tests for Rayleigh distribution based on quantiles. Communications in Statistics - Simulation and Computation, 51(2), p.341. https://doi.org/10.1080/03610918.2019.1651336.

2. Khaldoon Alhyasat, Ibrahim Kamarulzaman, Amer Ibrahim Al-Omari, Mohd Aftar Abu Bakar. (2020). Power Size Biased Two-Parameter Akash Distribution. Statistics in Transition New Series, 21(3), p.73. https://doi.org/10.21307/stattrans-2020-045.

3. Shashi Bhushan, Anoop Kumar, Amer Ibrahim Al-Omari, Ghadah A. Alomani. (2023). Mean Estimation for Time-Based Surveys Using Memory-Type Logarithmic Estimators. Mathematics, 11(9), p.2125. https://doi.org/10.3390/math11092125.

4. Shashi Bhushan, Anoop Kumar, Sana Shahab, Showkat Ahmad Lone, Salemah A. Almutlak. (2022). Modified Class of Estimators Using Ranked Set Sampling. Mathematics, 10(21), p.3921. https://doi.org/10.3390/math10213921.

5. Junlong Pan, Weifu Li, Liyuan Liu, Kang Jia, Tong Liu, Fen Chen. (2023). Variable Selection Using Deep Variational Information Bottleneck with Drop-Out-One Loss. Applied Sciences, 13(5), p.3008. https://doi.org/10.3390/app13053008.

6. Shashi Bhushan, Anoop Kumar, Amani Alrumayh, Hazar A. Khogeer, Ronald Onyango, Nadia Hashim Al-Noor. (2022). Evaluating the performance of memory type logarithmic estimators using simple random sampling. PLOS ONE, 17(12), p.e0278264. https://doi.org/10.1371/journal.pone.0278264.

7. Desmond Ag-Yi, Eric N. Aidoo, Yan Sun. (2022). A comparison of normality tests towards convoluted probability distributions. Research in Mathematics, 9(1) https://doi.org/10.1080/27684830.2022.2098568.

8. Eda Gizem Koçyiğit, Cem Kadilar. (2024). Information theory approach to ranked set sampling and new sub-ratio estimators. Communications in Statistics - Theory and Methods, 53(4), p.1331. https://doi.org/10.1080/03610926.2022.2100910.

9. Shashi Bhushan, Anoop Kumar, Najwan Alsadat, Manahil SidAhmed Mustafa, Meshayil M. Alsolmi. (2023). Some Optimal Classes of Estimators Based on Multi-Auxiliary Information. Axioms, 12(6), p.515. https://doi.org/10.3390/axioms12060515.

10. Samir K. Ashour, Mohamed S. Abdallah. (2022). New distribution function estimators and tests of perfect ranking in concomitant-based ranked set sampling. Communications in Statistics - Simulation and Computation, 51(3), p.823. https://doi.org/10.1080/03610918.2019.1659360.

11. Amer I. Al-Omari, Mohamed S. Abdallah. (2023). Estimation of the distribution function using moving extreme and MiniMax ranked set sampling. Communications in Statistics - Simulation and Computation, 52(5), p.1909. https://doi.org/10.1080/03610918.2021.1891433.

12. Amer Ibrahim Al-Omari, Abdul Haq. (2019). Novel entropy estimators of a continuous random variable. International Journal of Modeling, Simulation, and Scientific Computing, 10(02), p.1950004. https://doi.org/10.1142/S1793962319500041.

13. Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain. (2024). A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications. Heliyon, 10(17), p.e36764. https://doi.org/10.1016/j.heliyon.2024.e36764.

14. Yuxin Gong, Shen Wang, Tingyue Yu, Xunzhi Jiang, Fanghui Sun. (2024). Improving adversarial robustness using knowledge distillation guided by attention information bottleneck. Information Sciences, 665, p.120401. https://doi.org/10.1016/j.ins.2024.120401.

15. Ehsan Zamanzade, Mahdi Mahdizadeh. (2019). Ranked Set Sampling. , p.259. https://doi.org/10.1016/B978-0-12-815044-3.00019-8.

16. Shashi Bhushan, Anoop Kumar, Md Tanwir Akhtar, Showkat Ahmad Lone. (2022). Logarithmic type predictive estimators under simple random sampling. AIMS Mathematics, 7(7), p.11992. https://doi.org/10.3934/math.2022668.

17. Peter Harremoës. (2023). Rate Distortion Theory for Descriptive Statistics. Entropy, 25(3), p.456. https://doi.org/10.3390/e25030456.

18. Selen Cakmakyapan, Gamze Ozel. (2021). Generalized Lindley Family with application on Wind Speed Data. Pakistan Journal of Statistics and Operation Research, , p.387. https://doi.org/10.18187/pjsor.v17i2.2518.

19. Mahdi Mahdizadeh, Ehsan Zamanzade. (2017). Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Revista Colombiana de Estadística, 40(2), p.279. https://doi.org/10.15446/rce.v40n2.60375.

20. Shashi Bhushan, Anoop Kumar, Jharna Banerjie. (2023). Mean estimation using logarithmic estimators in stratified ranked set sampling. Life Cycle Reliability and Safety Engineering, 12(1), p.1. https://doi.org/10.1007/s41872-022-00212-4.

21. Hadi Alizadeh Noughabi, Gholam Reza Mohtashami Borzadaran. (2020). An Updated Review of Goodness of Fit Tests Based on Entropy. Journal of the Iranian Statistical Society, 19(2), p.175. https://doi.org/10.52547/jirss.19.2.175.

Dimensions

PlumX

Article abstract page views

431

Downloads

Download data is not yet available.