Published
Entropy Estimation From Ranked Set Samples With Application to Test of Fit
Estimación de entropía de muestras de rango ordenado con aplicación a pruebas de ajuste
DOI:
https://doi.org/10.15446/rce.v40n2.58944Keywords:
Judgment ranking, Goodness of fit test, Entropy estimation (en)Bondad de ajuste, Estimación de entropía, Ranking de juicios (es)
Downloads
References
Chen, H., Stasny, E. A. & Wolfe, D. A. (2005), 'Ranked set sampling for efficient estimation of a population proportion', Statistics in Medicine 24, 3319-3329.
Correa, J. C. (1995), 'A new estimator of entropy', Communications in Statistics-Theory Methods 24, 2439-2449.
Duembgen, L. & Zamanzade, E. (2013), 'Inference on a distribution function from ranked set samples', arXiv:1304.6950v3 [stat.ME].
Ebrahimi, N., Habibullah, M. & Soo_, E. (1994), 'Two measures of sample entropy', Statistics & Probability Letters 20, 225-234.
Frey, J., Ozturk, O. & Deshpande, J. (2007), 'Nonparametric tests for perfect judgment rankings', Journal of the American Statistical Association 102(48), 708-717.
Grzegorzewski, P. & Wieczorkowski, R. (1999), 'Entropy-based goodness-of-fit test for exponentiality', Communications in Statistics-Theory Methods 28, 1183-1202.
Haq, A., Brown, J., Moltchanova, E. & Al-Omari, A. (2014), 'Mixed ranked set sampling design', Journal of Applied Statistics 41, 2141-2156.
Howard, R. W., Jones, S. C., Mauldin, J. K. & Beal, R. H. (1982), 'Abundance, distribution and colony size estimates for reticulitermes spp. (isopter: Rhinotermitidae) in southern mississippi', Environmental Entomology 11, 1290-1293.
Huang, J. (1997), 'Asymptotic properties of the npmle of a distribution function based on ranked set samples', The Annals of Statistics 25(3), 1036-1049.
Kvam, P. H. (2003), 'Ranked set sampling based on binary water quality data with covariates', Journal of Agricultural, Biological and Environmental Statistics 8, 271-279.
Kvam, P. & Samaniego, F. (1994), 'Nonparametric maximum likelihood estimation based on ranked set samples', Journal of the American Statistical Association 89, 526-537.
MacEachern, S., Ozturk, O., Wolfe, D. & Stark, G. (2002), 'A new ranked set sample estimator of variance', Journal of the Royal Statistical Society: Series B. 64, 177-188.
Mahdizadeh, M. (2012), 'On the use of ranked set samples in entropy based test of fit for the laplace distribution', Revista Colombiana de Estadística 35(3), 443-455.
Mahdizadeh, M. & Arghami, N. (2009), 'Efficiency of ranked set sampling in entropy estimation and goodness-of-fit testing for the inverse gaussian law', Journal of Statistical Computation and Simulation 80, 761-774.
Mahdizadeh, M. & Zamanzade, E. (2016), 'Kernel-based estimation of P(X >Y) in ranked set sampling', Statistics and Operations Research Transactions (SORT) 40(2), 243-266.
McIntyre, G. A. (1952), 'A method for unbiased selective sampling using ranked set sampling', Australian Journal of Agricultural Research 3, 385-390.
Mudholkar, G. S. & Tian, L. (2002), 'An entropy characterization of the inverse gaussian distribution and related goodness-of-fit test', Journal of Statistical Planning and Inference 102, 211-221.
Murray, R. A., Ridout, M. S. & Cross, J. V. (2000), 'The use of ranked set sampling in spray deposit assessment', Aspects of Applied Biology 57, 141-146.
Muttlak, H. (1996), 'Pair rank set sampling', Biometrical Journal 38(7), 879-885.
Muttlak, H. (1997), 'Median ranked set sampling', Journal of Applied Statistical Sciences, 6, 245-255.
Nussbaum, B. D. & Sinha, B. K. (1997), Cost effective gasoline sampling using ranked set sampling, in 'Proceedings of the Section on Statistics and the Environment', American Statistical Association, pp. 83-87.
Ozturk, O., Bilgin, O. & Wolfe, D. A. (2005), 'Estimation of population mean and variance in flock management: a ranked set sampling approach in a finite population setting', Journal of Statistical Computation and Simulation 75, 905-919.
Perron, F. & Sinha, B. (2004), 'Estimation of variance based on a ranked set sample', Journal of Statistical Planning and Inference 120, 21-28.
Samawi, H., Abu-Daayeh, H. & Ahmed, S. (1996), 'Estimating the population mean using extreme ranked set sampling', Biometrical Journal 38, 577-586.
Sanhueza, A., Leiva, V. & López-Kleine, L. (2011), 'On the student-t mixture inverse gaussian model with an application to protein production', Revista Colombiana de Estadística 34(1), 177-195.
Shannon, C. E. (1948), 'A mathematical theory of communications', Bell System Technical Journal 27, 623-656.
Stokes, S. L. (1980), 'Estimation of variance using judgment ordered ranked set samples', Biometrics 36, 35-42.
Stokes, S. L. & Sager, T. W. (1988), 'Characterization of a ranked-set sample with application to estimating distribution functions', Journal of the American Statistical Association 83, 374-381.
Takahasi, K. & Wakimoto, K. (1968), 'On unbiased estimates of the population mean based on the sample stratified by means of ordering', Annals of the Institute of Statistical Mathematics 20, 1-31.
Vasicek, O. (1976), 'A test for normality based on sample entropy', Journal of Royal Statistical Society, Ser B 38, 54-59.
Zamanzade, E. & Vock, M. (2015), 'Variance estimation in ranked set sampling using a concomitant variable', Statistics & Probability Letters 105, 1-5.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. V. Ahrari, S. Baratpour, A. Habibirad, V. Fakoor. (2022). Goodness of fit tests for Rayleigh distribution based on quantiles. Communications in Statistics - Simulation and Computation, 51(2), p.341. https://doi.org/10.1080/03610918.2019.1651336.
2. Khaldoon Alhyasat, Ibrahim Kamarulzaman, Amer Ibrahim Al-Omari, Mohd Aftar Abu Bakar. (2020). Power Size Biased Two-Parameter Akash Distribution. Statistics in Transition New Series, 21(3), p.73. https://doi.org/10.21307/stattrans-2020-045.
3. Shashi Bhushan, Anoop Kumar, Amer Ibrahim Al-Omari, Ghadah A. Alomani. (2023). Mean Estimation for Time-Based Surveys Using Memory-Type Logarithmic Estimators. Mathematics, 11(9), p.2125. https://doi.org/10.3390/math11092125.
4. Shashi Bhushan, Anoop Kumar, Sana Shahab, Showkat Ahmad Lone, Salemah A. Almutlak. (2022). Modified Class of Estimators Using Ranked Set Sampling. Mathematics, 10(21), p.3921. https://doi.org/10.3390/math10213921.
5. Junlong Pan, Weifu Li, Liyuan Liu, Kang Jia, Tong Liu, Fen Chen. (2023). Variable Selection Using Deep Variational Information Bottleneck with Drop-Out-One Loss. Applied Sciences, 13(5), p.3008. https://doi.org/10.3390/app13053008.
6. Shashi Bhushan, Anoop Kumar, Amani Alrumayh, Hazar A. Khogeer, Ronald Onyango, Nadia Hashim Al-Noor. (2022). Evaluating the performance of memory type logarithmic estimators using simple random sampling. PLOS ONE, 17(12), p.e0278264. https://doi.org/10.1371/journal.pone.0278264.
7. Desmond Ag-Yi, Eric N. Aidoo, Yan Sun. (2022). A comparison of normality tests towards convoluted probability distributions. Research in Mathematics, 9(1) https://doi.org/10.1080/27684830.2022.2098568.
8. Eda Gizem Koçyiğit, Cem Kadilar. (2024). Information theory approach to ranked set sampling and new sub-ratio estimators. Communications in Statistics - Theory and Methods, 53(4), p.1331. https://doi.org/10.1080/03610926.2022.2100910.
9. Shashi Bhushan, Anoop Kumar, Najwan Alsadat, Manahil SidAhmed Mustafa, Meshayil M. Alsolmi. (2023). Some Optimal Classes of Estimators Based on Multi-Auxiliary Information. Axioms, 12(6), p.515. https://doi.org/10.3390/axioms12060515.
10. Samir K. Ashour, Mohamed S. Abdallah. (2022). New distribution function estimators and tests of perfect ranking in concomitant-based ranked set sampling. Communications in Statistics - Simulation and Computation, 51(3), p.823. https://doi.org/10.1080/03610918.2019.1659360.
11. Amer I. Al-Omari, Mohamed S. Abdallah. (2023). Estimation of the distribution function using moving extreme and MiniMax ranked set sampling. Communications in Statistics - Simulation and Computation, 52(5), p.1909. https://doi.org/10.1080/03610918.2021.1891433.
12. Amer Ibrahim Al-Omari, Abdul Haq. (2019). Novel entropy estimators of a continuous random variable. International Journal of Modeling, Simulation, and Scientific Computing, 10(02), p.1950004. https://doi.org/10.1142/S1793962319500041.
13. Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain. (2024). A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications. Heliyon, 10(17), p.e36764. https://doi.org/10.1016/j.heliyon.2024.e36764.
14. Yuxin Gong, Shen Wang, Tingyue Yu, Xunzhi Jiang, Fanghui Sun. (2024). Improving adversarial robustness using knowledge distillation guided by attention information bottleneck. Information Sciences, 665, p.120401. https://doi.org/10.1016/j.ins.2024.120401.
15. Ehsan Zamanzade, Mahdi Mahdizadeh. (2019). Ranked Set Sampling. , p.259. https://doi.org/10.1016/B978-0-12-815044-3.00019-8.
16. Shashi Bhushan, Anoop Kumar, Md Tanwir Akhtar, Showkat Ahmad Lone. (2022). Logarithmic type predictive estimators under simple random sampling. AIMS Mathematics, 7(7), p.11992. https://doi.org/10.3934/math.2022668.
17. Peter Harremoës. (2023). Rate Distortion Theory for Descriptive Statistics. Entropy, 25(3), p.456. https://doi.org/10.3390/e25030456.
18. Selen Cakmakyapan, Gamze Ozel. (2021). Generalized Lindley Family with application on Wind Speed Data. Pakistan Journal of Statistics and Operation Research, , p.387. https://doi.org/10.18187/pjsor.v17i2.2518.
19. Mahdi Mahdizadeh, Ehsan Zamanzade. (2017). Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Revista Colombiana de Estadística, 40(2), p.279. https://doi.org/10.15446/rce.v40n2.60375.
20. Shashi Bhushan, Anoop Kumar, Jharna Banerjie. (2023). Mean estimation using logarithmic estimators in stratified ranked set sampling. Life Cycle Reliability and Safety Engineering, 12(1), p.1. https://doi.org/10.1007/s41872-022-00212-4.
21. Hadi Alizadeh Noughabi, Gholam Reza Mohtashami Borzadaran. (2020). An Updated Review of Goodness of Fit Tests Based on Entropy. Journal of the Iranian Statistical Society, 19(2), p.175. https://doi.org/10.52547/jirss.19.2.175.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).