Published
Local dependence in bivariate copulae with Beta marginals
Dependencia local en copulas bivariadas con marginales Beta
DOI:
https://doi.org/10.15446/rce.v40n2.59404Keywords:
Beta distribution, local dependence function, copula, bivariate densities (en)Asociación, distribución Beta, cópula, correlación, función de distribución bivariada (es)
Downloads
The local dependence function (LDF) describes changes in the correlation structure of continuous bivariate random variables along their range. Bivariate density functions with Beta marginals can be used to model jointly a wide variety of data with bounded outcomes in the (0,1) range, e.g. proportions. In this paper we obtain expressions for the LDF of bivariate densities constructed using three different copula models (Frank, Gumbel and Joe) with Beta marginal distributions, present examples for each, and discuss an application of these models to analyse data collected in a study of marks obtained on a statistics exam by postgraduate students.
La función de dependencia local (FDL) describe cambios en la estructura
de la correlación entre dos variables aleatorias continuas sobre su recorrido conjunto. Funciones bivariadas de densidad de probabilidad con densidades marginales Beta pueden utilizarse para modelar conjuntamente una amplia variedad de variables respuesta acotadas en el intervalo (0,1), por ejemplo proporciones.
En este artículo obtenemos expresiones para la FDL de densidades bivariadas utilizando tres modelos de cópulas (Frank, Gumbel y Joe) con densidades marginales Beta, presentamos ejemplos para cada una de estas funciones, y discutimos una aplicación de estos modelos al análisis de datos recolectados en un estudio de calificaciones para un examen de estadística aplicado a estudiantes de postgrado.
References
Ali, M. M., Mikhail, N. & Haq, M. S. (1978), 'A class of bivariate distributions including the bivariate logistic', Journal of Multivariate Analysis 8(3), 405-412.
Azzalini, A. & Dalla Valle, A. (1996), 'The multivariate skew-normal distribution', Biometrika 83(4), 715-726.
D'Este, G. M. (1981), 'A Morgenstern-type bivariate gamma distribution', Biometrika 68(1), 339-340.
El-Bassiouny, A. & Jones, M. (2009), 'A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions', Statistical Methods and Applications 18(4), 465-481.
Escarela, G. & Hernández, A. (2009), 'Modelling random couples using copulas', Revista Colombiana de Estadística 32(1), 33-58.
Fairlie, D. (1960), 'The performance of some correlation coefficients for a general bivariate distribution', Biometrika 18(3/4), 307-323.
Fisher, N. & Switzer, P. (1985), 'Chi-plots for assessing dependence', Biometrika 72(2), 253-265.
Frank, M. (1979), 'On the simultaneous associativity of F(x,y) and x+y-F (x,y)', Aequationes Matematicae 19(1), 194-226.
Genest, C. & Boies, J. (2003), 'Detecting dependence with Kendall plots', The American Statistician 57(4), 275-284.
Gumbel, E. (1960), 'Distributions des valeurs extrêmes en plusieurs dimensions', Publications de l'Institut de statistique de l'Université de Paris 9, 171-173.
Gupta, A., Orozco-Castañeda, J. & Nagar, D. (2011), 'Non-central bivariate Beta distribution', Statistical Papers 52(1), 139-152.
Gupta, A. & Wong, C. (1985), 'On three and five parameter bivariate Beta distributions', Metrika 32, 85-91.
Gupta, R., Kirmani, S. & Srivastava, H. (2010), 'Local dependence functions for some families of bivariate distributions and total positivity', Applied Mathematics and Computation 216(4), 1267-1279.
Holland, P. W. & Wang, Y. J. (1987), 'Dependence function for continuous bivariate densities', Communications in Statistics-Theory and Methods 16(3), 863-876.
Joe, H. (1993), 'Parametric families of multivariate distributions with given margins', Journal of Multivariate Analysis 46(2), 262-282.
Joe, H. (1997), Multivariate Models and Multivariate Dependence Concepts, Chapman and Hall /CRC, London.
Jones, M. (1996), 'The local dependence function', Biometrika 83(4), 889-904.
Jones, M. (1998), 'Constant local dependence', Journal of Multivariate Analysis 64(2), 148-155.
Jones, M. (2002), 'Multivariate t and Beta distributions associated with the multivariate F distribution', Metrika 54(3), 215-231.
Jones, M. & Koch, I. (2003), ' Dependence maps: Local dependence in practice', Statistics and Computing 13(3), 241-255.
Kuha, J. (2004), 'AIC and BIC: Comparisons of assumptions and performance', Sociological Methods & Research 33(2), 188-229.
Kumar, P. (2010), 'Probability distributions and the estimation of Ali-Mikhail-Haq Copula', Applied Mathematical Statistics 4(14), 657-666.
Mardia, K. (1970), 'Measures of multivariate skewness and kurtosis with applications', Biometrika 57(3), 519-530.
Mardia, K. (1974), 'Applications of some measures of multivariate skewness and
kurtosis in testing normality and robustness studies', Sankhya:The Indian Journal of Statistics, Series B 36(2), 115-128.
Morgernstern, D. (1956), 'Applications of some measures of multivariate skewness
and kurtosis in testing normality and robustness studies', Mitteilungsblatt für Mathematische Statistik 8, 234-235.
Nelsen, R. (2013), An Introduction to Copulas, Springer, New York.
Olkin, I. & Liu, R. (2003), 'A bivariate beta distribution', Statistics & Probability Letters 62(4), 407-412.
R Development Core Team (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.*http://www.R-project.org
Rose, C. & Smith, M. (2002), Mathematical Statistics with Mathematica, Springer, New York.
Schucany, W., Parr, W. & Boyer, J. (1978), 'Correlation structure in Farlie-Gumbel-Morgenstern distributions', Biometrika 65(3), 650-653.
Schweizer, B. & Wol_, E. (1981), 'On nonparametric measures of dependence for random variables', The Annals of Statistics 8(2), 878-885.
Sklar, A. (1959), 'Fonctions de répartition à n dimensions et leurs marges', Publications de l'Institut de statistique de l'Université de Paris 8, 229-231.
Tjøstheim, D. & Hufthammer, K. O. (2013), 'Local Gaussian correlation: A new measure of dependence', Journal of Econometrics 172(1), 33-48.
Wolfram Research Inc (2014), Mathematica version 10, Wolfram Research Inc, Champaign, Illinois. *http://www.wolfram.com
Yan, J. (2007), 'Enjoy the joy of copulas: withh a package copula', Journal of Statistical Software 21(1), 1-21.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Susanne Trick, Constantin A. Rothkopf, Frank Jäkel. (2023). Parameter estimation for a bivariate beta distribution with arbitrary beta marginals and positive correlation. METRON, 81(2), p.163. https://doi.org/10.1007/s40300-023-00247-2.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).