Published
Kernel Function in Local Linear Peters-Belson Regression
Función del núcleo en la regresión lineal local de Peters-Belson
DOI:
https://doi.org/10.15446/rce.v41n2.65654Keywords:
Kernel Function, Local Linear Peters-Belson Regression, Majority Group, Minority Group, Welch's Approximation. (en)Aproximación de Welch, función kernel, regresión lineal local (es)
Downloads
Determinar el alcance de una disparidad, si la hubiere, entre grupos de personas, por ejemplo, raza o género, es de interés en muchos campos, incluida la salud pública para el tratamiento médico y la prevención de enfermedades o en casos de discriminación en relación con la igualdad salarial para estimar las disparidades salariales entre los empleados minoritarios y mayoritarios. La regresión de Peters Belson (PB) es una forma de coincidencia estadística, similar en espíritu a la coincidencia de ancho de banda de Bhattacharya que se propone para este propósito. En este trabajo, repasamos el uso de la regresión del PB en casos legales de Bura et al. (2012). Se describen los enfoques paramétricos y no paramétricos de la regresión del PB y demostramos que en la regresión no paramétrica del PB una función de kernel adecuada puede mejorar los resultados, es decir, seleccionando la función de kernel apropiada, podemos reducir el sesgo y la varianza de los estimadores, también aumentan el poder de las pruebas.
References
Achcar, J. A. & Lopes, S. R. C. (2016), `Linear and Non-Linear Regression Models Assuming a Stable Distribution', Revista Colombiana de Estadística 39(1), 109-128.
Belson, W. A. (1956), `A technique for studying the effects of a television broadcast', Applied Statistics 5, 195_202. Bhattacharya, P. K. (1989), Estimation of treatment main effect and treatment-covariate interaction in observational studies using bandwidth-matching, Technical Report 188, Division of Statistics, University of California, Davis.
Bhattacharya, P. K. & Gastwirth, J. L. (1999), `Estimation of the Odds-Ratio in an Observational Study Using Bandwidth-Matching', Journal of Nonparametric Statistics 11, 1-12.
Blinder, A. S. (1973), `Wage discrimination: reduced form and structural estimates', Journal of Human Resources 8, 436-455.
Bura, E., Gastwirth, J. L. & Hikawa, H. (2012), The use of peters-belson regression in legal cases, in `Nonparametric Statistical Methods and Related Topics: A Festschrift in Honor of Professor PK Bhattacharya on the Occasion of His 80th Birthday', World Scientific, pp. 213-231.
Cleveland, W. S. & Devlin, S. J. (1988), `Locally-weighted regression: an approach to regression analysis by local fitting', Journal of the American Statistical Association 83, 597-610.
Fan, J. & Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, Chapman and Hall, London.
Gastwirth, J. L. (1989), `A clarification of some statistical issues in Watson vs. Fort Worth Bank and Trust', Jurimetrics Journal 29, 267-284.
Gastwirth, J. L. & Greenhouse, S. W. (1995), `Biostatistical Concepts and Methods in the Legal Setting', Statistics in Medicine 14, 1641-1653.
Gray, M. W. (1993), `Can statistics tell us what we do not want to hear? The case of complex salary structures', Statistical Science 8(2), 144-158.
Greiner, D. J. (2008), `Causal inference in civil rights litigation', Harvard Law Review 122, 533-598.
Hikawa, H. (2009), Local linear peters-belson regression and its applications to employment discrimination cases, Doctoral dissertation, Department of Statistics , George Washington University.
Hikawa, H., Bura, E. & Gastwirth, J. L. (2010a), `Local Linear Logistic Peters-Belson Regression and its application in employment discrimination cases', Statistics and its Interface 3, 125-144.
Hikawa, H., Bura, E. & Gastwirth, J. L. (2010b), Robust peters-belson type estimators of measures of disparity and their applications in employment discrimination cases, Technical report, Department of Statistics, George Washington University.
Loader, C. (1999), Local Regression and Likelihood, Springer-Verlag, New York.
Nayak, T. K. & Gastwirth, J. L. (1997), `The Peters-Belson approach to measures of economic and legal discrimination', Advances in the Theory and Practice of Statistics pp. 587-601.
Oaxaca, R. (1973), `Male-Female differentials in urban labor markets', International Economic Review 14, 693-709.
Peters, C. C. (1941), `A method of matching groups for experiments with no loss of populations', Journal of Educational Research 34(8), 606-612.
Scheffe, H. (1970), `Practical solutions of the Behrens-Fisher problem', Journal of the American Statistical Association 65(332), 1501-1508.
Welch, B. L. (1949), `Further note on Mrs. Aspin's tables and on certain approximations to the tabled function', Biometrika 36(3/4), 293-296.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2018 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).