Published
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
Usando un anclaje para mejorar predicciones lineales con aplicación a la predicción de progresión de enfermedad
DOI:
https://doi.org/10.15446/rce.v41n2.68535Keywords:
Anchor, Amyotrophic lateral sclerosis, Biased regression, Linear models, Ordinary least squares (en)Anclaje, esclerosis lateral amiotrófica, modelos lineales, mínimos cuadrados ordinarios, regresión sesgada (es)
Downloads
assumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis.
References
Amemiya, T. (1973), 'Regression analysis when the dependent variable is truncated normal', Econometrica 41(6), 997-1016.
Armon, C., Graves, M., Moses, D., Forté, D., Sepulveda, L., Darby, S. & Smith, R. (2000), 'Linear estimates of disease progression predict survival in patients with amyotrophic lateral sclerosis', Muscle & Nerve 23(6), 874-882.
Atassi, N., Berry, J., Shui, A., Zach, N., Sherman, A., Sinani, E., Walker, J.,
Katsovskiy, I., Schoenfeld, D., Cudkowicz, M. & Leitner, M. (2014), 'The
pro-act database: design, initial analyses, and predictive features', Neurology 83(19), 1719-1725.
Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M. & Elhadad, N. (2015),
Intelligible models for healthcare: Predicting pneumonia risk and hospital
-day readmission, in 'Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining', ACM, pp. 1721-1730.
Cedarbaum, J., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B. &
Nakanishi, A. (1999), 'The alsfrs-r: a revised als functional rating scale that
incorporates assessments of respiratory function', Journal of the Neurological Sciences 169(1), 13-21.
Gelman, A. (2014), Bayesian data analysis, tercera edn, CRC Press, Boca Raton, FL.
Hoerl, A. & Kennard, R. (2000), 'Ridge regression: Biased estimation for
nonorthogonal problems', Technometrics 42(1), 80-86.
Karanevich, A., Statland, J., Gajewski, B. & He, J. (2018), 'Using an onsetanchored bayesian hierarchical model to improve predictions for amyotrophic lateral sclerosis disease progression', BMC Medical Research Methodology 18(1), 19.
Kutner, M., Nachtsheim, C. & Neter, J. (2004), Applied linear regression models, cuarta edn, McGraw-Hill, New York.
Lesaffre, E., Rizopoulos, D. & Tsonaka, R. (2007), 'The logistic transform for
bounded outcome scores', Biostatistics 8(1), 72-85.
Magnus, T., Beck, M., Giess, R., Puls, I., Naumann, M. & Toyka, K. (2002), 'Disease progression in amyotrophic lateral sclerosis: Predictors of survival',
Muscle & Nerve 25(5), 709-714.
Morris, C. & Lysy, M. (2012), 'Shrinkage estimation in multilevel normal models', Statistical Science 27(1), 115-134.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Divya Ramamoorthy, Kristen Severson, Soumya Ghosh, Karen Sachs, Emily G. Baxi, Alyssa N. Coyne, Elizabeth Mosmiller, Lindsey Hayes, Aianna Cerezo, Omar Ahmad, Promit Roy, Steven Zeiler, John W. Krakauer, Jonathan Li, Aneesh Donde, Nhan Huynh, Miriam Adam, Brook T. Wassie, Alex Lenail, Natasha Leanna Patel-Murray, Yogindra Raghav, Karen Sachs, Velina Kozareva, Stanislav Tsitkov, Tobias Ehrenberger, Julia A. Kaye, Leandro Lima, Stacia Wyman, Edward Vertudes, Naufa Amirani, Krishna Raja, Reuben Thomas, Ryan G. Lim, Ricardo Miramontes, Jie Wu, Vineet Vaibhav, Andrea Matlock, Vidya Venkatraman, Ronald Holewenski, Niveda Sundararaman, Rakhi Pandey, Danica-Mae Manalo, Aaron Frank, Loren Ornelas, Lindsey Panther, Emilda Gomez, Erick Galvez, Daniel Perez, Imara Meepe, Susan Lei, Louis Pinedo, Chunyan Liu, Ruby Moran, Dhruv Sareen, Barry Landin, Carla Agurto, Guillermo Cecchi, Raquel Norel, Sara Thrower, Sarah Luppino, Alanna Farrar, Lindsay Pothier, Hong Yu, Ervin Sinani, Prasha Vigneswaran, Alexander V. Sherman, S. Michelle Farr, Berhan Mandefro, Hannah Trost, Maria G. Banuelos, Veronica Garcia, Michael Workman, Richie Ho, Robert Baloh, Jennifer Roggenbuck, Matthew B. Harms, Carolyn Prina, Sarah Heintzman, Stephen Kolb, Jennifer Stocksdale, Keona Wang, Todd Morgan, Daragh Heitzman, Arish Jamil, Jennifer Jockel-Balsarotti, Elizabeth Karanja, Jesse Markway, Molly McCallum, Tim Miller, Ben Joslin, Deniz Alibazoglu, Senda Ajroud-Driss, Jay C. Beavers, Mary Bellard, Elizabeth Bruce, Nicholas Maragakis, Merit E. Cudkowicz, James Berry, Terri Thompson, Steven Finkbeiner, Leslie M. Thompson, Jennifer E. Van Eyk, Clive N. Svendsen, Jeffrey D. Rothstein, Jonathan D. Glass, Christina N. Fournier, Alexander Sherman, Christian Lunetta, David Walk, Ghazala Hayat, James Wymer, Kelly Gwathmey, Nicholas Olney, Senda Ajroud-Driss, Terry Heiman-Patterson, Ximena Arcila-Londono, Kenneth Faulconer, Ervin Sanani, Alex Berger, Julia Mirochnick, Todd M. Herrington, James D. Berry, Kenney Ng, Ernest Fraenkel. (2022). Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data. Nature Computational Science, 2(9), p.605. https://doi.org/10.1038/s43588-022-00299-w.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).