Published
Simultaneously Testing for Location and Scale Parameters of Two Multivariate Distributions
Prueba simultánea de ubicación y parámetros de escala de dos distribuciones multivariables
DOI:
https://doi.org/10.15446/rce.v42n2.70815Keywords:
Combining function, Data depth, Permutation test, Two-sample test (en)Función de combinación, Profundidad de datos, Prueba de permutación, Prueba de dos muestras (es)
Downloads
References
Baumgartner, W., Weiß, P. & Schindler, H. (1998), ‘A nonparametric test for the general two-sample problem’, Biometrics pp. 1129–1135.
Chavan, A. R. & Shirke, D. T. (2016), ‘Nonparametric tests for testing equality of location parameters of two multivariate distributions’, Electronic Journal of Applied Statistical Analysis 9(2), 417–432.
Chenouri, S. & Small, C. G. (2012), ‘A nonparametric multivariate multisample test based on data depth’, Electronic Journal of Statistics 6, 760–782.
Cucconi, O. (1968), ‘Un nuovo test non parametrico per il confronto tra due gruppi campionari’, Giornale degli Economisti e Annali di Economia pp. 225–248.
Donoho, D. L. & Gasko, M. (1992), ‘Breakdown properties of location estimates based on halfspace depth and projected outlyingness’, The Annals of Statistics pp. 1803–1827.
Dovoedo, Y. H. & Chakraborti, S. (2015), ‘Power of depth-based nonparametric tests for multivariate locations’, Journal of Statistical Computation and Simulation 85(10), 1987–2006.
Fisher, R. A. (1925), Statistical methods for research workers, Genesis Publishing Pvt Ltd.
Jolicoeur, P. & Mosimann, J. E. (1960), ‘Size and shape variation in the painted turtle. a principal component analysis’, Growth 24(4), 339–354.
Lepage, Y. (1971), ‘A combination of wilcoxon’s and ansari-bradley’s statistics’, Biometrika 58(1), 213–217.
Li, J., Ban, J. & Santiago, L. S. (2011), ‘Nonparametric tests for homogeneity of species assemblages: a data depth approach’, Biometrics 67(4), 481–1488.
Li, J. & Liu, R. Y. (2004), ‘New nonparametric tests of multivariate locations and scales using data depth’, Statistical Science pp. 686–696.
Li, J. & Liu, R. Y. (2016), New nonparametric tests for comparing multivariate scales using data depth, in ‘Robust Rank-Based and Nonparametric Methods’, Springer, pp. 209–226.
Liptak, T. (1958), ‘On the combination of independent tests’, Magyar Tud Akad Mat Kutato Int Kozl 3, 171–197.
Liu, R. Y. (1990), ‘On a notion of data depth based on random simplices’, The Annals of Statistics 18(1), 405–414.
Liu, R. Y., Parelius, J. M. & Singh, K. (1999), ‘Multivariate analysis by data depth: descriptive statistics, graphics and inference,(with discussion and a rejoinder by liu and singh)’, The annals of statistics 27(3), 783–858.
Liu, R. Y. & Singh, K. (1993), ‘A quality index based on data depth and multivariate rank tests’, Journal of the American Statistical Association 88(421), 252–260.
Mahalanobis, P. (1936), Mahalanobis distance, in ‘Proceedings National Institute of Science of India’, Vol. 49, pp. 234–256.
Murakami, H. (2007), ‘Lepage type statistic based on the modified baumgartner statistic’, Computational statistics & data analysis 51(10), 5061–5067.
Neuhäuser, M. (2000), ‘An exact two-sample test based on the baumgartner-weiß-schindler statistic and a modification of lepage’s test’, Communications in Statistics-Theory and Methods 29(1), 67–78.
Park, H.-I. (2015), ‘Nonparametric simultaneous test procedures’, Revista Colombiana de Estadística 38(1), 107–121.
Pesarin, F. (2001), Multivariate permutation tests: with applications in biostatistics, Vol. 240, Wiley Chichester.
Podgor, M. J. & Gastwirth, J. L. (1994), ‘On non-parametric and generalized tests for the two-sample problem with location and scale change alternatives’, Statistics in Medicine 13(5-7), 747–758.
Rousson, V. (2002), ‘On distribution-free tests for the multivariate two-sample location-scale model’, Journal of multivariate analysis 80(1), 43–57.
Singh, K. (1991), A notion of majority depth. Unpublished document.
Tippett, L. H. C. (1952), The Methods Of Statistics. 4th Rev, Williams And Nor gate Ltd.; London.
Tukey, J. W. (1975), Mathematics and the picturing of data, in ‘Proceedings of the international congress of mathematicians’, Vol. 2, pp. 523–531.
Zuo, Y. & Serfling, R. (2000), ‘General notions of statistical depth function’, Annals of statistics pp. 461–482.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Atul R Chavan, Digambar T Shirke. (2020). Nonparametric two sample tests for scale parameters of multivariate distributions. Communications for Statistical Applications and Methods, 27(4), p.397. https://doi.org/10.29220/CSAM.2020.27.4.397.
2. Rosa Arboretti, Elena Barzizza, Nicoló Biasetton, Marta Disegna. (2025). A review of multivariate permutation tests: Findings and trends. Journal of Multivariate Analysis, 207, p.105421. https://doi.org/10.1016/j.jmva.2025.105421.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).