Published
Bayesian Inference For The Segmented Weibull Distribution
Inferencia Bayesiana Para Distribuciones Weibull Segmentadas
DOI:
https://doi.org/10.15446/rce.v42n2.76815Keywords:
Segmented Weibull distribution, change-points, censored data, covariates, Bayesian methods. (en)Distribución Weibull segmentada, puntos de cambio, datos censurados, covariables, métodos Bayesianos (es)
Downloads
In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different efects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.
En este artículo introducimos un nuevo modelo Bayesiano para distribuciones Weibull segmentadas, que puede ser una buena alternativa en el análisis de datos aplicados a la investigación en salud, con la presencia de censuras y covariables. Con este método basado en la estimación de puntosde cambio, hemos obtenido un excelente ajuste a los datos utilizados como ejemplos. De acuerdo con el modelo propuesto, fue posible identificar rangos de valores en las series temporales en que una variable independiente podría tener diferentes efectos. Este es un resultado importante desde el punto de vista clínico. Los estimados bayesianos fueron obtenidos usando métodos de Monte Carlo en Cadenas de Markov. Ejemplos basados en conjuntos de datos reales fueran usados para ilustrar el uso de los modelos propuestos y sus potenciales aplicaciones en investigaciones clínicas.
References
Achcar, J. A. & Bolfarine, H. (1989), ‘Constant hazard against a change-point alternative: a Bayesian approach with censored data’, Communications in Statistics-Theory and Methods 18(10), 3801–3819.
Achcar, J. A. & Loibel, S. (1998), ‘Constant hazard function models with a change point: A Bayesian analysis using Markov chain Monte Carlo methods’, Biometrical journal 40(5), 543–555.
Achcar, J. A., Rodrigues, E. R. & Tzintzun, G. (2011a), ‘Modelling interoccurrence times between ozone peaks in Mexico City in the presence of multiple change points’, Brazilian Journal of Probability and Statistics 25(2), 183–204.
Achcar, J. A., Rodrigues, E. R. & Tzintzun, G. (2011b), ‘Using non-homogeneous poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City’, Environmetrics 22(1), 1–12.
Box, G. E. P. & Tiao, G. C. (1973), Bayesian inference in statistical analysis, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. Addison-Wesley Series in Behavioral Science: Quantitative Methods.
Chen, X. & Baron, M. (2014), ‘Change-point analysis of survival data with application in clinical trials’, Open Journal of Statistics 4(09), 663–677.
Chib, S. & Greenberg, E. (1995), ‘Understanding the metropolis-hastings algorithm’, The American Statistician 49(4), 327–335.
Deng, J.-Y. & Liang, H. (2014), ‘Clinical significance of lymph node metastasis in gastric cancer’, World Journal of Gastroenterology 20(14), 3967–3975.
Desmond, R. A., Weiss, H. L., Arani, R. B., Soong, S.-j., Wood, M. J., Fiddian, P. A., Gnann, J. W. & Whitley, R. J. (2002), ‘Clinical applications for change-point analysis of herpes zoster pain’, Journal of pain and symptom management 23(6), 510–516.
Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag, New York.
Gelfand, A. E. & Smith, A. F. M. (1990), ‘Sampling-based approaches to calculating marginal densities’, Journal of the American Statistical Association 85, 398–409.
Goodman, M. S., Li, Y. & Tiwari, R. C. (2011), ‘Detecting multiple change points in piecewise constant hazard functions’, Journal of applied statistics 38(11), 2523–2532.
Hastings, W. K. (1970), ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrics 57, 97–109.
He, P., Kong, G. & Su, Z. (2013), ‘Estimating the survival functions for right censored and interval-censored data with piecewise constant hazard functions’, Contemporary clinical trials 35(2), 122–127.
Hosmer, D. W., Lemeshow, S. & May, S. (2008), Applied survival analysis: regression modeling of time to event data, Wiley-Interscience.
Jandhyala, V., Fotopoulos, S. & Evaggelopoulos, N. (1999), ‘Change-point methods for weibull models with applications to detection of trends in extreme temperatures’, Environmetrics: The official journal of the International Environmetrics Society 10(5), 547–564.
Jiwani, S. L. (2005), Parametric changepoint survival model with application to coronary artery bypass graft surgery data, PhD thesis, Statistics and Actuarial Science department, Simon Fraser University, Canada.
Kaplan, E. L. & Meier, P. (1958), ‘Nonparametric estimation from incomplete observations’, Journal of the American Statistical Association 53, 457–481.
Karasoy, D. S. & Kadilar, C. (2007), ‘A new Bayes estimate of the change point in the hazard function’, Computational statistics & data analysis 51(6), 2993–3001.
Kizilaslan, F. & Nadar, M. (2015), ‘Classical and bayesian estimation of reliability inmulticomponent stress-strength model based on weibull distribution’, Revista Colombiana de Estadística 38(2), 467–484.
Lawless, J. F. (2003), Statistical models and methods for lifetime data, Wiley Series in Probability and Statistics, second edn, John Wiley & Sons, Hoboken, NJ.
Loader, C. R. (1991), ‘Inference for a hazard rate change point’, Biometrika 78(4), 749–757.
Matthews, D. E. & Farewell, V. T. (1982), ‘On testing for a constant hazard against a change-point alternative’, Biometrics 38(2), 463–468.
Matthews, D., Farewell, V. & Pyke, R. (1985), ‘Asymptotic score-statistic processes and tests for constant hazard against a change-point alternative’, The Annals of Statistics 13(2), 583–591.
Müller, H.-G. & Wang, J.-L. (1990), ‘Nonparametric analysis of changes in hazard rates for censored survival data: An alternative to change-point models’, Biometrika 77(2), 305–314.
Naylor, J. C. & Smith, A. F. M. (1982), ‘Applications of a method for the efficient computation of posterior distributions’, Journal of the Royal Statistical Society, C 31, 214–225.
Nguyen, H., Rogers, G. & Walker, E. (1984), ‘Estimation in change-point hazard rate models’, Biometrika 71(2), 299–304.
Noura, A. & Read, K. (1990), ‘Proportional hazards changepoint models in survival analysis’, Journal of the Royal Statistical Society: Series C (Applied Statistics) 39(2), 241–253.
Pak, A., Parham, G. A. & Saraj, M. (2013), ‘Inference for the weibull distribution based on fuzzy data’, Revista Colombiana de Estadística 36(2), 337–356.
SAS Institute Inc (2016), SAS/STATR⃝ 14.2 User’s Guide, The MCMC Procedure, Cary, NC: SAS Institute Inc.
Sertkaya, D. & Sözer, M. T. (2003), ‘A bayesian approach to the constant hazard model with a change point and an application to breast cancer data’, Hacettepe Journal of Mathematics and Statistics 32, 33–41.
Tierney, L. (1994), ‘Markov chains of exploring posterior distributions’, Annals of Statistics 22, 1701–1762.
Tierney, L., Kass, R. E. & Kadane, J. B. (1989), ‘Fully exponential Laplace approximations to expectations and variances of nonpositive functions’, Journal of the American Statistical Association 84(407), 710–716.
Weibull, W. (1951), ‘A statistical distribution function of wide applicability’, Journal of Applied Mechanics 18, 293–297.
Whiteley, N., Andrieu, C. & Doucet, A. (2011), ‘Bayesian computational methods for inference in multiple change-points models’. Discussion paper, University of Bristol, UK.
Worsley, K. (1986), ‘Confidence regions and tests for a change-point in a sequence of exponential family random variables’, Biometrika 73(1), 91–104.
Yao, Y. C. (1986), ‘Maximum likelihood estimation in hazard rate models with a change-point’, Communications in Statistics-Theory and Methods 15(8), 2455–2466.
Yiannoutsos, C. T. (2009), ‘Modeling aids survival after initiation of antiretroviral treatment by Weibull models with changepoints’, Journal of the International AIDS Society 12(1), 1–10.
Zhao, X., Wu, X. & Zhou, X. (2009), ‘A change-point model for survival data with long-term survivors’, Statistica Sinica 19, 377–390.
Zucker, D. M. & Lakatos, E. (1990), ‘Weighted log rank type statistics for comparing survival curves when there is a time lag in the effectiveness of treatment’, Biometrika 77(4), 853–864.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jorge Alberto Achcar, Ricardo Puziol de Oliveira. (2022). Climate Change: Use of Non-Homogeneous Poisson Processes for Climate Data in Presence of a Change-Point. Environmental Modeling & Assessment, 27(2), p.385. https://doi.org/10.1007/s10666-021-09797-z.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).