Published
Generalized Poisson Hidden Markov Model for Overdispersed or Underdispersed Count Data
Modelo oculto de Markov de Poisson generalizado para datos de recuento sobredispersados o subdispersos
DOI:
https://doi.org/10.15446/rce.v43n1.77542Keywords:
EM algorithm, Generalized Poisson distribution, Hidden Markov Model, Overdispersion (en)Algoritmo EM, Distribución generalizada de Poisson, Modelo oculto de Markov, Sobredispersión (es)
Downloads
References
Baum, L. E. (1972), ‘An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes’, In equalities 3, 1–8.
Cepeda-Cuervo, E. & Cifuentes-Amado, M. V. (2017), ‘Double Generalized Beta-Binomial and Negative Binomial Regression Models’, Revista Colombiana de Estadística 40(1), 141–163.
Consul, P. C. (1989), Generalized Poisson Distributions: Properties and Applications, Dekker, New York.
Consul, P. C. & Jain, G. C. (1973), ‘A Generalization of Poisson Distribution’, Technometrics 15(4), 791–799.
Consul, P. C. & Shoukri, M. M. (1984), ‘Maximum likelihood estimation for the generalized Poisson distribution’, Communication in Statistics - Theory and Methods 13(12), 1533–1547.
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum Likelihood from Incomplete Data via the EM Algorithm’, Journal of the Royal Statistical Society, Serie B 39(1), 1–38.
Greenwood, M. G. & Yule, G. U. (1920), ‘An inquiry into the nature of frequency distributions representative of multiple happenings, with particular reference to the occurrence of multiple attacks of disease or of repeated accidence’, Journal Royal Statistical Society 83, 255–279.
Joe, H. & Zhu, R. (2005), ‘Generalized Poisson Distribution: the Property of Mixture of Poisson and Comparison with Negative Binomial Distribution’, Biometrical Journal 47(2), 219–229.
Kendall, M. & Stuart, A. (1963), The Advanced Theory of Statistics, Vol. 1, Hafner Publishing Co., New York.
Neyman, J. (1931), ‘On a new class of contagious distributions, applicable in entomology and bacteriology’, Technometrics 10, 35–57.
Pereira, J. R., Marques, L. A. & da Costa, J. M. (2012), ‘An Empirical Comparison of EM Initialization Methods and Model Choice Criteria for Mixtures of Skew Normal Distributions’, Revista Colombiana de Estadística 35(3), 457–478.
Sebastian, T., Jeyaseelan, V., Jeyaseelan, L., Anandan, S., George, S. & Bangdiwala, S. (2019), ‘Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models’, Statistical Methods in Medical Research 28(5), 1552–1563.
Tuenter, H. J. H. (2000), ‘On the generalized Poisson distribution’, Statistica Neerlandica 54, 374–376.
Wang, W. & Famoye, F. (1997), ‘Modelling household fertility decisions with generalized Poisson regression’, Journal of Population Economics 10, 273–283.
Witowski, V. & Foraita, R. (2013), HMMpa: Analysing accelerometer data using hidden markov models, R package version 1.0.1. *https://cran.r-project.org/package=HMMpa
Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I. & Wirsik, N. (2014), ‘Using hidden Markov models to improve quantifying physical activity in accelerometer data - A simulation study’, PLOS ONE 9(12), 77–92.
Zucchini, W. & MacDonald, I. L. (2009), Hidden Markov Models for Time Series: An Introduction Using R, Chapman and Hall, Boca Raton.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Nithin Isaac, Akshay Kumar Saha. (2023). Analysis of Refueling Behavior Models for Hydrogen-Fuel Vehicles: Markov versus Generalized Poisson Modeling. Sustainability, 15(18), p.13474. https://doi.org/10.3390/su151813474.
2. Nithin Isaac, Akshay Saha. (2022). Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling. Energies, 15(18), p.6616. https://doi.org/10.3390/en15186616.
3. Marenglen Biba, Narasimha Rao Vajjhala. (2022). Handbook of Machine Learning Applications for Genomics. Studies in Big Data. 103, p.145. https://doi.org/10.1007/978-981-16-9158-4_10.
4. Nithin Isaac, Akshay K. Saha. (2024). Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model. Sustainability, 16(10), p.4055. https://doi.org/10.3390/su16104055.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).