Published

2021-01-15

Elicitation of the Parameters of Multiple Linear Models

Elicitación de los parámetros de un modelo de regresión lineal múltiple

DOI:

https://doi.org/10.15446/rce.v44n1.83525

Keywords:

Conjugate distribution, Elicitation, Bayesian statistics, Informative distribution (en)

Downloads

Authors

 

Estimating the parameters of a multiple linear model is a common task in all areas of sciences. In order to obtain conjugate distributions, the Bayesian estimation of these parameters is usually carried out using noninformative priors. When informative priors are considered in the Bayesian estimation an important problem arises because techniques are
required to extract information from experts and represent it in an informative prior distribution. Elicitation techniques can be used for such
purpose even though they are more complex than the traditional methods.

In this paper, we propose a technique to construct an informative prior distribution from expert knowledge using hypothetical samples. Our proposal involves building a mental picture of the population of responses at several specific points of the explanatory variables of a given model and
indirectly eliciting the mean and the variance at each of these points. In addition, this proposal consists of two steps: the first step describes the elicitation process and the second step shows a simulation process to estimate the model parameters.

una tarea común en todas las áreas de las ciencias. Con la idea de obtener distribuciones conjugadas, la estimación Bayesiana de estos parámetros se
lleva a cabo usando distribuciones a priori no informativas. Un problema importante resulta cuando se incorporan distribuciones a priori informativas en la estimación Bayesiana, puesto que se hace necesario usar técnicas para extraer información de expertos, y representar dicha información en una distribución a prior informativa. Así, los métodos de elicitación pueden ser implementados para tal fin, a pesar de la complejidad de esta tarea en relación con las metodologías tradicionales.


En este paper, se propone un técnica para construir una distribución a priori informativa a partir de muestras hipotéticas usando información de
expertos. Esta propuesta se basa en la construcción de un mapa mental de la población de respuestas en diferentes valores específicos de la variable
explicativa en el modelo, y luego elicitar de forma indirecta la media y la varianza en cada uno de dichos valores de interés.


La propuesta es presentada en dos pasos, el primer paso describe el proceso de elicitación, y el segundo paso muestra un proceso de simulación para estimar los parámetros del modelo.

References

Aaron, R., De Wispelare, A. R., Herren, L. T. & Clemen, R. T. (1995), ‘The use of probability elicitation in the high-level nuclear waste regulation program’, International Journal of Forecasting 11, 5–24. DOI: https://doi.org/10.1016/0169-2070(94)02006-B

Andrade, J. A. A. & Gosling, J. P. (2011), ‘Predicting rainy seasons: quantifying the beliefs of prophets’, Journal of Applied Statistics 38(1), 183–193. DOI: https://doi.org/10.1080/02664760903301168

Andrade, J. A. A. & Gosling, J. P. (2018), ‘Expert knowledge elicitation using item response theory’, Journal of Applied Statistics 45(16), 2981–2998. DOI: https://doi.org/10.1080/02664763.2018.1450365

Barrera-Causil, C. J., Correa, J. C. & Marmolejo-Ramos, F. (2019), ‘Experimental investigation on the elicitation of subjective distributions’, Frontiers in Psychology 10, 862. DOI: https://doi.org/10.3389/fpsyg.2019.00862

Biedermann, A., Bozza, S., Taroni, F. & Aitken, C. (2017), ‘The consequences of understanding expert probability reporting as a decision’, Science and Justice 57, 80–85. DOI: https://doi.org/10.1016/j.scijus.2016.10.005

Chaloner, K. & T., D. (1983), ‘Assessment of a beta prior distribution: Pm elicitation’, The Statistician 27, 174–180. DOI: https://doi.org/10.2307/2987609

Christov, S. C., Marquard, J. L., S., G., Avrunin, G. S. & Clarke, L. A. (2017), ‘Assessing the effectiveness of five process elicitation methods: A case study of chemotherapy treatment plan review’, Applied Ergonomics 59, 364–376. DOI: https://doi.org/10.1016/j.apergo.2016.08.032

DeGroot, M. H. (1970), Optimal Statistical Decisions, McGraw Hill, New York.

Demuynck, T. (2013), ‘A mechanism for eliciting the mean and quantiles of a random variable’, Economics Letters 121(1), 121–123. DOI: https://doi.org/10.1016/j.econlet.2013.07.019

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K. & Caley, M. J. (2012), ‘A software tool for elicitation of expert knowledge about species richness or similar counts’, Environmental Modelling and Software 30, 1–14. DOI: https://doi.org/10.1016/j.envsoft.2011.11.011

Gavasakar, U. (1988), ‘A comparison of two elicitation methods for a prior distribution for a binomial parameter’, Managment Science 34(6), 784–790.

Gzyl, H., ter Horst, E. & Molina, G. (2017), ‘Inferring probability densities from expert opinion’, Applied Mathematical Modelling 43, 306–320. DOI: https://doi.org/10.1016/j.apm.2016.11.006

Harrison, G. W., Martínez-Correa, J. & Swarthout, J. T. (2014), ‘Eliciting subjective probabilities with binary lotteries’, Journal of Economic Behavior & Organization 101, 128–140. DOI: https://doi.org/10.1016/j.jebo.2014.02.011

Holloway, C. A. (1979), Decison Making Under Uncertainty: Models and Choices, Prentince-Hall, Inc., Englewood Cliffs, NJ.

James, A., Choy, S. L. & Mengersen, K. (2010), ‘Elicitator: An expert elicitation tool for regression in ecology’, Environmental Modelling & Software 25, 129–145. DOI: https://doi.org/10.1016/j.envsoft.2009.07.003

Johnson-Laird, P. (1980), ‘Mental models in cognitive science’, Cognitive Science 4(1), 71–115. DOI: https://doi.org/10.1207/s15516709cog0401_4

Johnson-Laird, P. N. (1994), ‘Mental models and probabilistic thinking’, Cognition 50, 189–209. DOI: https://doi.org/10.1016/0010-0277(94)90028-0

Johnson-Laird, P. N. (2010), ‘Mental models and human reasoning’, Proceedings of the National Academy of Sciences 107(43), 18243–18250. DOI: https://doi.org/10.1073/pnas.1012933107

Kadane, J. B. & Wolfson, L. J. (1998), ‘Experiences in elicitation’, The Statistician 47(1), 3–19. DOI: https://doi.org/10.1111/1467-9884.00113

Nemet, G. F., Baker, E. & Jenni, K. E. (2013), ‘Modeling the future costs of carbon capture using experts? elicited probabilities under policy scenarios’, Energy 53, 218–228. DOI: https://doi.org/10.1016/j.energy.2013.04.047

O’Hagan, A. (2019), ‘Expert knowledge elicitation: Subjective but scientific’, The American Statistician 73(sup1), 69–81. DOI: https://doi.org/10.1080/00031305.2018.1518265

O’Hagan, A. & Oakley, J. E. (2004), ‘Probability is perfect, but we can’t elicit it perfectly’, Reliability Engineering and System Safety 85, 239–248. DOI: https://doi.org/10.1016/j.ress.2004.03.014

Raiffa, H. (1970), Decision Analysis: Introductory Lectures on Choice Under Uncertainty, Addison-Wesley: Reading, Masschusetts. DOI: https://doi.org/10.2307/2987280

Renooij, S. & Witteman, C. (1999), ‘Talking probabilities: Communicating probabilistic information with words and numbers’, International Journal of Approximate Reasoning 22, 169–194. DOI: https://doi.org/10.1016/S0888-613X(99)00027-4

Seynaeve, D., Varewyck, M. & Verbeke, T. (2019), ‘Extension of the monte Carlo web application and expert knowledge elicitation web application’, EFSA Supporting Publications 16(6), 1630E. DOI: https://doi.org/10.2903/sp.efsa.2019.EN-1630

Shadbolt, N. & Burton, M. (1995), ‘Knowledge elicitation: A systematic approach’, Evaluation of Human Work: A Practical Ergonomics Methodology pp. 406–440.

Truong, P. N. & Heuvelink, G. B. M. (2013), ‘Uncertainty quantification of soil property maps with statistical expert elicitation’, Geoderma 202-203, 142–152. DOI: https://doi.org/10.1016/j.geoderma.2013.03.016

Tversky, A. (1974), ‘Assessing uncertainty’, Journal of the Royal Statistical Society. Series B (Methodological) 36(2), 148–159. DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00996.x

Umesh, G., A. (1988), ‘Comparison of two elicitation methods for a prior for a binomial parameter’, Management Science 34, 784–790. DOI: https://doi.org/10.1287/mnsc.34.6.784

Wilcox, C., Mallos, N. J., Leonard, G. H., Rodriguez, A. & Hardesty, B. D. (2016), ‘Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife’, Marine Policy 65, 107–114. DOI: https://doi.org/10.1016/j.marpol.2015.10.014

Winkler, R. L. (1967a), ‘The assessment of prior distributions in bayesian analysis’, Journal of the American Statistical Association 62(319), 776–800. DOI: https://doi.org/10.1080/01621459.1967.10500894

Winkler, R. L. (1967b), ‘The quantification of judgement: Some methodological suggestions’, Journal of the American Statistical Association 62(320), 1105–1120. DOI: https://doi.org/10.1080/01621459.1967.10500920

Witteman, C. & Renooij, S. (2003), ‘Evaluation of a verbal numerical probability scale’, International Journal of Approximate Reasoning 33, 117–131. DOI: https://doi.org/10.1016/S0888-613X(02)00151-2

How to Cite

APA

Barrera-Causil, C. J. and Correa-Morales, J. C. (2021). Elicitation of the Parameters of Multiple Linear Models. Revista Colombiana de Estadística, 44(1), 159–170. https://doi.org/10.15446/rce.v44n1.83525

ACM

[1]
Barrera-Causil, C.J. and Correa-Morales, J.C. 2021. Elicitation of the Parameters of Multiple Linear Models. Revista Colombiana de Estadística. 44, 1 (Jan. 2021), 159–170. DOI:https://doi.org/10.15446/rce.v44n1.83525.

ACS

(1)
Barrera-Causil, C. J.; Correa-Morales, J. C. Elicitation of the Parameters of Multiple Linear Models. Rev. colomb. estad. 2021, 44, 159-170.

ABNT

BARRERA-CAUSIL, C. J.; CORREA-MORALES, J. C. Elicitation of the Parameters of Multiple Linear Models. Revista Colombiana de Estadística, [S. l.], v. 44, n. 1, p. 159–170, 2021. DOI: 10.15446/rce.v44n1.83525. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/83525. Acesso em: 28 mar. 2025.

Chicago

Barrera-Causil, Carlos Javier, and Juan Carlos Correa-Morales. 2021. “Elicitation of the Parameters of Multiple Linear Models”. Revista Colombiana De Estadística 44 (1):159-70. https://doi.org/10.15446/rce.v44n1.83525.

Harvard

Barrera-Causil, C. J. and Correa-Morales, J. C. (2021) “Elicitation of the Parameters of Multiple Linear Models”, Revista Colombiana de Estadística, 44(1), pp. 159–170. doi: 10.15446/rce.v44n1.83525.

IEEE

[1]
C. J. Barrera-Causil and J. C. Correa-Morales, “Elicitation of the Parameters of Multiple Linear Models”, Rev. colomb. estad., vol. 44, no. 1, pp. 159–170, Jan. 2021.

MLA

Barrera-Causil, C. J., and J. C. Correa-Morales. “Elicitation of the Parameters of Multiple Linear Models”. Revista Colombiana de Estadística, vol. 44, no. 1, Jan. 2021, pp. 159-70, doi:10.15446/rce.v44n1.83525.

Turabian

Barrera-Causil, Carlos Javier, and Juan Carlos Correa-Morales. “Elicitation of the Parameters of Multiple Linear Models”. Revista Colombiana de Estadística 44, no. 1 (January 15, 2021): 159–170. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/83525.

Vancouver

1.
Barrera-Causil CJ, Correa-Morales JC. Elicitation of the Parameters of Multiple Linear Models. Rev. colomb. estad. [Internet]. 2021 Jan. 15 [cited 2025 Mar. 28];44(1):159-70. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/83525

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Carlos Barrera-Causil, Jose González-Montañez. (2023). Harmonization Approach to Spatial and Social Techniques to Define Landscape Restoration Areas in a Colombian Andes Complex Landscape. Forests, 14(9), p.1913. https://doi.org/10.3390/f14091913.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Usage
  • SciELO - Full Text Views: 179
  • SciELO - Abstract Views: 37
  • Captures
  • Mendeley - Readers: 5

Article abstract page views

313

Downloads