Published
Elicitation of the Parameters of Multiple Linear Models
Elicitación de los parámetros de un modelo de regresión lineal múltiple
DOI:
https://doi.org/10.15446/rce.v44n1.83525Keywords:
Conjugate distribution, Elicitation, Bayesian statistics, Informative distribution (en)Downloads
Estimating the parameters of a multiple linear model is a common task in all areas of sciences. In order to obtain conjugate distributions, the Bayesian estimation of these parameters is usually carried out using noninformative priors. When informative priors are considered in the Bayesian estimation an important problem arises because techniques are
required to extract information from experts and represent it in an informative prior distribution. Elicitation techniques can be used for such
purpose even though they are more complex than the traditional methods.
In this paper, we propose a technique to construct an informative prior distribution from expert knowledge using hypothetical samples. Our proposal involves building a mental picture of the population of responses at several specific points of the explanatory variables of a given model and
indirectly eliciting the mean and the variance at each of these points. In addition, this proposal consists of two steps: the first step describes the elicitation process and the second step shows a simulation process to estimate the model parameters.
una tarea común en todas las áreas de las ciencias. Con la idea de obtener distribuciones conjugadas, la estimación Bayesiana de estos parámetros se
lleva a cabo usando distribuciones a priori no informativas. Un problema importante resulta cuando se incorporan distribuciones a priori informativas en la estimación Bayesiana, puesto que se hace necesario usar técnicas para extraer información de expertos, y representar dicha información en una distribución a prior informativa. Así, los métodos de elicitación pueden ser implementados para tal fin, a pesar de la complejidad de esta tarea en relación con las metodologías tradicionales.
En este paper, se propone un técnica para construir una distribución a priori informativa a partir de muestras hipotéticas usando información de
expertos. Esta propuesta se basa en la construcción de un mapa mental de la población de respuestas en diferentes valores específicos de la variable
explicativa en el modelo, y luego elicitar de forma indirecta la media y la varianza en cada uno de dichos valores de interés.
La propuesta es presentada en dos pasos, el primer paso describe el proceso de elicitación, y el segundo paso muestra un proceso de simulación para estimar los parámetros del modelo.
References
Aaron, R., De Wispelare, A. R., Herren, L. T. & Clemen, R. T. (1995), ‘The use of probability elicitation in the high-level nuclear waste regulation program’, International Journal of Forecasting 11, 5–24. DOI: https://doi.org/10.1016/0169-2070(94)02006-B
Andrade, J. A. A. & Gosling, J. P. (2011), ‘Predicting rainy seasons: quantifying the beliefs of prophets’, Journal of Applied Statistics 38(1), 183–193. DOI: https://doi.org/10.1080/02664760903301168
Andrade, J. A. A. & Gosling, J. P. (2018), ‘Expert knowledge elicitation using item response theory’, Journal of Applied Statistics 45(16), 2981–2998. DOI: https://doi.org/10.1080/02664763.2018.1450365
Barrera-Causil, C. J., Correa, J. C. & Marmolejo-Ramos, F. (2019), ‘Experimental investigation on the elicitation of subjective distributions’, Frontiers in Psychology 10, 862. DOI: https://doi.org/10.3389/fpsyg.2019.00862
Biedermann, A., Bozza, S., Taroni, F. & Aitken, C. (2017), ‘The consequences of understanding expert probability reporting as a decision’, Science and Justice 57, 80–85. DOI: https://doi.org/10.1016/j.scijus.2016.10.005
Chaloner, K. & T., D. (1983), ‘Assessment of a beta prior distribution: Pm elicitation’, The Statistician 27, 174–180. DOI: https://doi.org/10.2307/2987609
Christov, S. C., Marquard, J. L., S., G., Avrunin, G. S. & Clarke, L. A. (2017), ‘Assessing the effectiveness of five process elicitation methods: A case study of chemotherapy treatment plan review’, Applied Ergonomics 59, 364–376. DOI: https://doi.org/10.1016/j.apergo.2016.08.032
DeGroot, M. H. (1970), Optimal Statistical Decisions, McGraw Hill, New York.
Demuynck, T. (2013), ‘A mechanism for eliciting the mean and quantiles of a random variable’, Economics Letters 121(1), 121–123. DOI: https://doi.org/10.1016/j.econlet.2013.07.019
Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K. & Caley, M. J. (2012), ‘A software tool for elicitation of expert knowledge about species richness or similar counts’, Environmental Modelling and Software 30, 1–14. DOI: https://doi.org/10.1016/j.envsoft.2011.11.011
Gavasakar, U. (1988), ‘A comparison of two elicitation methods for a prior distribution for a binomial parameter’, Managment Science 34(6), 784–790.
Gzyl, H., ter Horst, E. & Molina, G. (2017), ‘Inferring probability densities from expert opinion’, Applied Mathematical Modelling 43, 306–320. DOI: https://doi.org/10.1016/j.apm.2016.11.006
Harrison, G. W., Martínez-Correa, J. & Swarthout, J. T. (2014), ‘Eliciting subjective probabilities with binary lotteries’, Journal of Economic Behavior & Organization 101, 128–140. DOI: https://doi.org/10.1016/j.jebo.2014.02.011
Holloway, C. A. (1979), Decison Making Under Uncertainty: Models and Choices, Prentince-Hall, Inc., Englewood Cliffs, NJ.
James, A., Choy, S. L. & Mengersen, K. (2010), ‘Elicitator: An expert elicitation tool for regression in ecology’, Environmental Modelling & Software 25, 129–145. DOI: https://doi.org/10.1016/j.envsoft.2009.07.003
Johnson-Laird, P. (1980), ‘Mental models in cognitive science’, Cognitive Science 4(1), 71–115. DOI: https://doi.org/10.1207/s15516709cog0401_4
Johnson-Laird, P. N. (1994), ‘Mental models and probabilistic thinking’, Cognition 50, 189–209. DOI: https://doi.org/10.1016/0010-0277(94)90028-0
Johnson-Laird, P. N. (2010), ‘Mental models and human reasoning’, Proceedings of the National Academy of Sciences 107(43), 18243–18250. DOI: https://doi.org/10.1073/pnas.1012933107
Kadane, J. B. & Wolfson, L. J. (1998), ‘Experiences in elicitation’, The Statistician 47(1), 3–19. DOI: https://doi.org/10.1111/1467-9884.00113
Nemet, G. F., Baker, E. & Jenni, K. E. (2013), ‘Modeling the future costs of carbon capture using experts? elicited probabilities under policy scenarios’, Energy 53, 218–228. DOI: https://doi.org/10.1016/j.energy.2013.04.047
O’Hagan, A. (2019), ‘Expert knowledge elicitation: Subjective but scientific’, The American Statistician 73(sup1), 69–81. DOI: https://doi.org/10.1080/00031305.2018.1518265
O’Hagan, A. & Oakley, J. E. (2004), ‘Probability is perfect, but we can’t elicit it perfectly’, Reliability Engineering and System Safety 85, 239–248. DOI: https://doi.org/10.1016/j.ress.2004.03.014
Raiffa, H. (1970), Decision Analysis: Introductory Lectures on Choice Under Uncertainty, Addison-Wesley: Reading, Masschusetts. DOI: https://doi.org/10.2307/2987280
Renooij, S. & Witteman, C. (1999), ‘Talking probabilities: Communicating probabilistic information with words and numbers’, International Journal of Approximate Reasoning 22, 169–194. DOI: https://doi.org/10.1016/S0888-613X(99)00027-4
Seynaeve, D., Varewyck, M. & Verbeke, T. (2019), ‘Extension of the monte Carlo web application and expert knowledge elicitation web application’, EFSA Supporting Publications 16(6), 1630E. DOI: https://doi.org/10.2903/sp.efsa.2019.EN-1630
Shadbolt, N. & Burton, M. (1995), ‘Knowledge elicitation: A systematic approach’, Evaluation of Human Work: A Practical Ergonomics Methodology pp. 406–440.
Truong, P. N. & Heuvelink, G. B. M. (2013), ‘Uncertainty quantification of soil property maps with statistical expert elicitation’, Geoderma 202-203, 142–152. DOI: https://doi.org/10.1016/j.geoderma.2013.03.016
Tversky, A. (1974), ‘Assessing uncertainty’, Journal of the Royal Statistical Society. Series B (Methodological) 36(2), 148–159. DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00996.x
Umesh, G., A. (1988), ‘Comparison of two elicitation methods for a prior for a binomial parameter’, Management Science 34, 784–790. DOI: https://doi.org/10.1287/mnsc.34.6.784
Wilcox, C., Mallos, N. J., Leonard, G. H., Rodriguez, A. & Hardesty, B. D. (2016), ‘Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife’, Marine Policy 65, 107–114. DOI: https://doi.org/10.1016/j.marpol.2015.10.014
Winkler, R. L. (1967a), ‘The assessment of prior distributions in bayesian analysis’, Journal of the American Statistical Association 62(319), 776–800. DOI: https://doi.org/10.1080/01621459.1967.10500894
Winkler, R. L. (1967b), ‘The quantification of judgement: Some methodological suggestions’, Journal of the American Statistical Association 62(320), 1105–1120. DOI: https://doi.org/10.1080/01621459.1967.10500920
Witteman, C. & Renooij, S. (2003), ‘Evaluation of a verbal numerical probability scale’, International Journal of Approximate Reasoning 33, 117–131. DOI: https://doi.org/10.1016/S0888-613X(02)00151-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carlos Barrera-Causil, Jose González-Montañez. (2023). Harmonization Approach to Spatial and Social Techniques to Define Landscape Restoration Areas in a Colombian Andes Complex Landscape. Forests, 14(9), p.1913. https://doi.org/10.3390/f14091913.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).