Published

2020-07-01

On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application

Distribución alpha-power-Kumaraswamy: propiedades, simulación y aplicación

DOI:

https://doi.org/10.15446/rce.v43n2.83598

Keywords:

Alpha power transformation, Maximum likelihood estimation, Moments, Orders statistics, The Kumaraswamy distribution (en)
Transformación de potencia alfa, Estimación de máxima verosimilitud, Momentos, Estadísticas de pedidos, La distribución de Kumaraswamy (es)

Downloads

Authors

  • Mohamed Ali Ahmed Al Madina Higher Institute of Management and Technology,Giza, Egypt.

Adding  new  parameters to  classical distributions becomes one  of  the most  important methods  for  increasing distributions flexibility,  especially, in  simulation   studies   and real data sets. In this paper, alpha power  transformation (APT) is used  and  applied  to  the Kumaraswamy (K) distribution and a proposed distribution, so called the alpha power Kumaraswamy (AK) distribution, is presented.  Some important mathematical properties are derived, parameters estimation of the AK distribution using maximum likelihood  method  is considered. A simulation study and  a  real  data   set  are  used  to  illustrate the  flexibility of the  AK distribution compared with other  distributions.

Agregar   nuevos   parámetros  a  las  distribuciones clásicas  se convierte en  uno  de  los  métodos  más  importantes para aumentar la  flexibilidad de las  distribuciones, especialmente en estudios de simulación y conjuntos de datos  reales. En este documento, se utiliza la transformación de potencia alfa (TPA) y es  aplicada  a la distribución de Kumaraswamy (K) y a una distribución propuesta, denominada distribución de energía  alfa  de Kumaraswamy (AK).  Se derivan algunas propiedades matemáticas, y se muestra la estimación de parámetros de la distribución AK utilizando el método  de máxima verosimilitud. Un estudio  de simulación y un conjunto de datos  reales  se utilizan para  ilustrar la flexibilidad de la distribución AK en comparación con otras  distribuciones.

References

Ali Ahmed, M. (2019), The new form libby-novick distribution , Communications in Statistics-Theory and Methods p. 1.

Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N. (1992), A first course in order statistics, Siam.

Garthwaite, P., Jolliffe, I. & Byron Jones, B. (2002), Statistical inference, Oxford University Press.

Gradshteyn, I. S. & Ryzhik, I. M. (2000), Table of integrals, series, and products, Academic press, San Diego.

Johnson, N. L., Kotz, S. & Balakrishnan, N. (1995), Continuous univariate distributions, John Wiley & Sons, Ltd, New York.

Jones, M. (2009), Kumaraswamys distribution: A beta-type distribution with some tractability advantages , Statistical Methodology 6(1), 70–81.

Kumaraswamy, P. (1980), A generalized probability density function for double- bounded random processes , Journal of Hydrology 46(1-2), 79–88.

Mahdavi, A. & Kundu, D. (2017), A new method for generating distributions with an application to exponential distribution , Communications in Statistics- Theory and Methods 46(13), 6543–6557.

McDonald, J. B. (2008), Some generalized functions for the size distribution of income, in Modeling Income Distributions and Lorenz Curves , Springer, pp. 37–55.

Meeker, W. Q. & Escobar, L. A. (2014), Statistical methods for reliability data, John Wiley & Sons.

Meniconi, M. & Barry, D. (1996), The power function distribution: A useful and simple distribution to assess electrical component reliability , Microelectronics Reliability 36(9), 1207–1212.

Merovci, F. & Puka, L. (2014), Transmuted pareto distribution, in ProbStat Forum , Vol. 7, pp. 1–11.

Pearson, K. (1895), X. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material , Philosophical Transactions of the Royal Society of London (A.) (186), 343–414.

How to Cite

APA

Ahmed, M. A. (2020). On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application. Revista Colombiana de Estadística, 43(2), 285–313. https://doi.org/10.15446/rce.v43n2.83598

ACM

[1]
Ahmed, M.A. 2020. On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application. Revista Colombiana de Estadística. 43, 2 (Jul. 2020), 285–313. DOI:https://doi.org/10.15446/rce.v43n2.83598.

ACS

(1)
Ahmed, M. A. On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application. Rev. colomb. estad. 2020, 43, 285-313.

ABNT

AHMED, M. A. On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application. Revista Colombiana de Estadística, [S. l.], v. 43, n. 2, p. 285–313, 2020. DOI: 10.15446/rce.v43n2.83598. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/83598. Acesso em: 28 mar. 2025.

Chicago

Ahmed, Mohamed Ali. 2020. “On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application”. Revista Colombiana De Estadística 43 (2):285-313. https://doi.org/10.15446/rce.v43n2.83598.

Harvard

Ahmed, M. A. (2020) “On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application”, Revista Colombiana de Estadística, 43(2), pp. 285–313. doi: 10.15446/rce.v43n2.83598.

IEEE

[1]
M. A. Ahmed, “On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application”, Rev. colomb. estad., vol. 43, no. 2, pp. 285–313, Jul. 2020.

MLA

Ahmed, M. A. “On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application”. Revista Colombiana de Estadística, vol. 43, no. 2, July 2020, pp. 285-13, doi:10.15446/rce.v43n2.83598.

Turabian

Ahmed, Mohamed Ali. “On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application”. Revista Colombiana de Estadística 43, no. 2 (July 1, 2020): 285–313. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/83598.

Vancouver

1.
Ahmed MA. On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application. Rev. colomb. estad. [Internet]. 2020 Jul. 1 [cited 2025 Mar. 28];43(2):285-313. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/83598

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Mohamed AHMED. (2021). A new closed form for Libby-Novick beta class of generalized distributions with applications to Weibull model.. İstatistik ve Uygulamalı Bilimler Dergisi, 2(1), p.23. https://doi.org/10.52693/jsas.936902.

2. Rania A. H. Mohamed, Mohammed Elgarhy, Manal H. Alabdulhadi, Ehab M. Almetwally, Taha Radwan. (2023). Statistical Inference of Truncated Cauchy Power-Inverted Topp–Leone Distribution under Hybrid Censored Scheme with Applications. Axioms, 12(2), p.148. https://doi.org/10.3390/axioms12020148.

3. Babulal Seal, Proloy Banerjee, Shreya Bhunia, Sanjoy Kumar Ghosh. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, , p.219. https://doi.org/10.18187/pjsor.v19i2.4130.

4. P. B. Amjish, K. Jayakumar. (2024). A new finite range increasing generalized failure rate distribution and it’s applications. Communications in Statistics - Simulation and Computation, , p.1. https://doi.org/10.1080/03610918.2024.2349163.

5. Mohamed AHMED. (2021). A New Kumaraswamy Class of Generalized Distributions with Applications to Exponential Model.. İstatistik ve Uygulamalı Bilimler Dergisi, 2(2), p.29. https://doi.org/10.52693/jsas.979832.

6. Mohamed Hussein, Howaida Elsayed, Gauss M. Cordeiro. (2022). A New Family of Continuous Distributions: Properties and Estimation. Symmetry, 14(2), p.276. https://doi.org/10.3390/sym14020276.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 6
  • Scopus - Citation Indexes: 9
  • Usage
  • SciELO - Full Text Views: 201
  • SciELO - Abstract Views: 77
  • Captures
  • Mendeley - Readers: 6

Article abstract page views

477

Downloads