Published
On the Alpha Power Kumaraswamy Distribution: Properties, Simulation and Application
Distribución alpha-power-Kumaraswamy: propiedades, simulación y aplicación
DOI:
https://doi.org/10.15446/rce.v43n2.83598Keywords:
Alpha power transformation, Maximum likelihood estimation, Moments, Orders statistics, The Kumaraswamy distribution (en)Transformación de potencia alfa, Estimación de máxima verosimilitud, Momentos, Estadísticas de pedidos, La distribución de Kumaraswamy (es)
Downloads
Adding new parameters to classical distributions becomes one of the most important methods for increasing distributions flexibility, especially, in simulation studies and real data sets. In this paper, alpha power transformation (APT) is used and applied to the Kumaraswamy (K) distribution and a proposed distribution, so called the alpha power Kumaraswamy (AK) distribution, is presented. Some important mathematical properties are derived, parameters estimation of the AK distribution using maximum likelihood method is considered. A simulation study and a real data set are used to illustrate the flexibility of the AK distribution compared with other distributions.
Agregar nuevos parámetros a las distribuciones clásicas se convierte en uno de los métodos más importantes para aumentar la flexibilidad de las distribuciones, especialmente en estudios de simulación y conjuntos de datos reales. En este documento, se utiliza la transformación de potencia alfa (TPA) y es aplicada a la distribución de Kumaraswamy (K) y a una distribución propuesta, denominada distribución de energía alfa de Kumaraswamy (AK). Se derivan algunas propiedades matemáticas, y se muestra la estimación de parámetros de la distribución AK utilizando el método de máxima verosimilitud. Un estudio de simulación y un conjunto de datos reales se utilizan para ilustrar la flexibilidad de la distribución AK en comparación con otras distribuciones.
References
Ali Ahmed, M. (2019), The new form libby-novick distribution , Communications in Statistics-Theory and Methods p. 1.
Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N. (1992), A first course in order statistics, Siam.
Garthwaite, P., Jolliffe, I. & Byron Jones, B. (2002), Statistical inference, Oxford University Press.
Gradshteyn, I. S. & Ryzhik, I. M. (2000), Table of integrals, series, and products, Academic press, San Diego.
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1995), Continuous univariate distributions, John Wiley & Sons, Ltd, New York.
Jones, M. (2009), Kumaraswamys distribution: A beta-type distribution with some tractability advantages , Statistical Methodology 6(1), 70–81.
Kumaraswamy, P. (1980), A generalized probability density function for double- bounded random processes , Journal of Hydrology 46(1-2), 79–88.
Mahdavi, A. & Kundu, D. (2017), A new method for generating distributions with an application to exponential distribution , Communications in Statistics- Theory and Methods 46(13), 6543–6557.
McDonald, J. B. (2008), Some generalized functions for the size distribution of income, in Modeling Income Distributions and Lorenz Curves , Springer, pp. 37–55.
Meeker, W. Q. & Escobar, L. A. (2014), Statistical methods for reliability data, John Wiley & Sons.
Meniconi, M. & Barry, D. (1996), The power function distribution: A useful and simple distribution to assess electrical component reliability , Microelectronics Reliability 36(9), 1207–1212.
Merovci, F. & Puka, L. (2014), Transmuted pareto distribution, in ProbStat Forum , Vol. 7, pp. 1–11.
Pearson, K. (1895), X. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material , Philosophical Transactions of the Royal Society of London (A.) (186), 343–414.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Mohamed AHMED. (2021). A new closed form for Libby-Novick beta class of generalized distributions with applications to Weibull model.. İstatistik ve Uygulamalı Bilimler Dergisi, 2(1), p.23. https://doi.org/10.52693/jsas.936902.
2. Rania A. H. Mohamed, Mohammed Elgarhy, Manal H. Alabdulhadi, Ehab M. Almetwally, Taha Radwan. (2023). Statistical Inference of Truncated Cauchy Power-Inverted Topp–Leone Distribution under Hybrid Censored Scheme with Applications. Axioms, 12(2), p.148. https://doi.org/10.3390/axioms12020148.
3. Babulal Seal, Proloy Banerjee, Shreya Bhunia, Sanjoy Kumar Ghosh. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, , p.219. https://doi.org/10.18187/pjsor.v19i2.4130.
4. P. B. Amjish, K. Jayakumar. (2024). A new finite range increasing generalized failure rate distribution and it’s applications. Communications in Statistics - Simulation and Computation, , p.1. https://doi.org/10.1080/03610918.2024.2349163.
5. Mohamed AHMED. (2021). A New Kumaraswamy Class of Generalized Distributions with Applications to Exponential Model.. İstatistik ve Uygulamalı Bilimler Dergisi, 2(2), p.29. https://doi.org/10.52693/jsas.979832.
6. Mohamed Hussein, Howaida Elsayed, Gauss M. Cordeiro. (2022). A New Family of Continuous Distributions: Properties and Estimation. Symmetry, 14(2), p.276. https://doi.org/10.3390/sym14020276.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).