Published

2021-01-15 — Updated on 2021-01-15

On Some Statistical Properties of the Spatio-Temporal Product Density

Sobre algunas propiedades estadísticas de la densidad producto espacio-temporal

DOI:

https://doi.org/10.15446/rce.v44n1.84779

Keywords:

Invasive meningococcal disease, Martingale theory, Ohser-type estimator, Second-order product density, Variance (en)
Enfermedad meningocócica invasiva, Teoría de martingala, Estimador de tipo Ohser, Densidad de producto de segundo orden, varianza (es)

Downloads

Authors

  • Juan F. Rodríguez Berrio University of Antioquia
  • Francisco J. Rodríguez-Cortes National University of Colombia
  • Jorge Mateu Univeristy Jaume I
  • Giada Adelfio University of Palermo

We present an extension of the non-parametric edge-corrected Ohser-type kernel estimator for the spatio-temporal product density function. We derive the mean and variance of the estimator and give a closed-form approximation for a spatio-temporal Poisson point process. Asymptotic properties of this second-order characteristic are derived, using an
approach based on martingale theory. Taking advantage of the convergence to normality, confidence surfaces under the homogeneous Poisson process are built. A simulation study is presented to compare our approximation for the variance with Monte Carlo estimated values. Finally, we apply the resulting estimator and its properties to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland Regional Council in Germany.

En este artículo, presentamos un estimador para la función de densidad producto de un patrón de puntos en espacio-tiempo. Este estimador es una extensión del estimador no paramétrico de Ohser, el cuál está basado en una función Kernel y ponderado por un corrector de borde. Deducimos la media y la varianza del estimador y, a su vez, damos una aproximación analítica para el caso de un patrón Poisson (completamente aleatorio). Adicionalmente, estudiamos ciertas propiedades asintóticas de nuestro estimador utilizando un enfoque basado en la teoría de martingalas y construimos superficies de confianza para el caso de aleatoriedad completa.
Presentamos un estudio de simulación para comparar nuestra aproximación de la varianza con los valores estimados a través del método Monte Carlo. Finalmente, utilizamos nuestro estimador para
analizar la distribución espacio-temporal de los registros de una enfermedad meningocócica
invasiva en la provincia del Rin en Alemania.

References

Adelfio, G. & Schoenberg, F. P. (2009), ‘Point process diagnostics based on weighted second-order statistics and their asymptotic properties’, Annals of the Institute of Statistical Mathematics 61(4), 929. DOI: https://doi.org/10.1007/s10463-008-0177-1

Adelfio, G., Siino, M., Mateu, J. & Rodríguez-Cortés, F. J. (2020), ‘Some properties of local weighted second-order statistics for spatio-temporal point processes’, Stochastic Environmental Research and Risk Assessment 34(1), 149–168. DOI: https://doi.org/10.1007/s00477-019-01748-1

Baddeley, A., Møller, J. & Waagepetersen, R. (2000), ‘Non-and semi-parametric estimation of interaction in inhomogeneous point patterns’, Statistica Neerlandica 54, 329–350. DOI: https://doi.org/10.1111/1467-9574.00144

Berman, M. & Diggle, P. (1989), ‘Estimating weighted integrals of the second-order intensity of a spatial point process’, Journal of the Royal Statistical Society: Series B (Methodological) 51(1), 81–92. DOI: https://doi.org/10.1111/j.2517-6161.1989.tb01750.x

Chiu, S. N., Stoyan, D., Kendall, W. S. & Mecke, J. (2013), Stochastic Geometry and Its Applications, third edn, John Wiley and Sons. DOI: https://doi.org/10.1002/9781118658222

Cox, D. R. & Isham, V. (1980), Point Processes, Chapman and Hall, London. Cressie, N. & Collins, L. B. (2001a), ‘Analysis of spatial point patterns using bundles of product density lisa functions’, Journal of Agricultural, Biological, and Environmental Statistics 6, 118–135. DOI: https://doi.org/10.1198/108571101300325292

Daley, D. J. & Vere-Jones, D. (2003), An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods, second edn, Springer-Verlag, New York.

Deng, H. & Wickham, H. (2011), Density estimation in R. Electronic publication.

Diggle, P. J. (2013), Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Chapman and Hall/CRC, Boca Raton. DOI: https://doi.org/10.1201/b15326

Fiksel, T. (1988), ‘Edge-corrected density estimators for point processes’, Statistics 19, 67–75. DOI: https://doi.org/10.1080/02331888808802072

Gabriel, E. (2014), ‘Estimating second-order characteristics of inhomogeneous spatio-temporal point processes’, Methodology and Computing in Applied Probability 16(2), 411–431. DOI: https://doi.org/10.1007/s11009-013-9358-3

Gabriel, E. & Diggle, P. J. (2009), ‘Second-order analysis of inhomogeneous spatio-temporal point process data’, Statistica Neerlandica 63, 43–51. DOI: https://doi.org/10.1111/j.1467-9574.2008.00407.x

Gabriel, E., Rowlingson, B. & Diggle, P. J. (2013), ‘stpp: An r package for plotting, simulating and analyzing spatio-temporal point patterns’, Journal of Statistical Software 53(2), 1–29. DOI: https://doi.org/10.18637/jss.v053.i02

Gabriel, E., Wilson, D. J., Leatherbarrow, A. J. H., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Fearnhead, P., Hart, C. A. & Diggle, P. J. (2010), ‘Spatio- temporal epidemiology of campylobacter jejuni enteritis, in an area of Northwest England, 2000-2002’, Epidemiology and Infection 138(10), 1384–1390. DOI: https://doi.org/10.1017/S0950268810000488

González, J. A., Hahn, U. & Mateu, J. (2020), ‘Analysis of tornado reports through replicated spatiotemporal point patterns’, Journal of the Royal Statistical Society: Series C (Applied Statistics) 69(1), 3–23. DOI: https://doi.org/10.1111/rssc.12375

González, J. A., Rodríguez-Cortés, F. J., Cronie, O. & Mateu, J. (2016), ‘Spatio- temporal point process statistics: A review’, Spatial Statistics 18, 505–544. DOI: https://doi.org/10.1016/j.spasta.2016.10.002

Guan, Y. (2007a), ‘A composite likelihood cross-validation approach in selecting bandwidth for the estimation of the pair correlation function’, Scandinavian Journal of Statistics 34, 336–346. DOI: https://doi.org/10.1111/j.1467-9469.2006.00533.x

Guan, Y. (2007b), ‘A least-squares cross-validation bandwidth selection approach in pair correlation function estimations’, Statistics and Probability Letters 77, 1722–1729. DOI: https://doi.org/10.1016/j.spl.2007.04.016

Guan, Y. (2009), ‘On nonparametric variance estimation for second-order statistics of inhomogeneous spatial point processes with a known parametric intensity form’, Journal of the American Statistical Association 104, 1482–1491. DOI: https://doi.org/10.1198/jasa.2009.tm08541

Hall, P. & Heyde, C. C. (2014), Martingale limit theory and its application, Academic Press.

Höhle, M. (2007), ‘surveillance: An R package for the monitoring of infectious diseases’, Computational Statistics 22(4), 571–582. DOI: https://doi.org/10.1007/s00180-007-0074-8

Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008), Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley and Sons, Chichester. DOI: https://doi.org/10.1002/9780470725160

Meyer, S., Elias, J. & M. Höhle, M. (2012), ‘A space-time conditional intensity model for invasive meningococcal disease occurrence’, Biometrics 68(2), 607–616. DOI: https://doi.org/10.1111/j.1541-0420.2011.01684.x

Møller, J. & Ghorbani, M. (2012), ‘Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes’, Statistica Neerlandica 66(4), 472–491. DOI: https://doi.org/10.1111/j.1467-9574.2012.00526.x

Møller, J. & Ghorbani, M. (2015), ‘Functional summary statistics for the Johnson- Mehl model’, Journal of Statistical Computation and Simulation 85, 899–916. DOI: https://doi.org/10.1080/00949655.2013.850691

Møller, J. & Waagepetersen, R. P. (2004), Statistical Inference and Simulation for Spatial Point Processes, Chapman and Hall/CRC, Boca Raton. DOI: https://doi.org/10.1201/9780203496930

Ohser, J. (1983), ‘On estimators for the reduced second-moment measure of point processes’, Mathematische Operationsforschung und Statistik, series Statistics 14, 63–71. DOI: https://doi.org/10.1080/02331888308801687

Ripley, B.D. (1988), Statistical Inference for Spatial Processes, Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511624131

Sheather, S. J. & Jones, M. C. (1991), ‘A reliable data-based bandwidth selection method for kernel density estimation’, Journal of the Royal Statistical Society. Series B (Methodological) 53, 683–690. DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01857.x

Siino, M., Rodríguez-Cortés, F. J., Mateu, J. & Adelfio, G. (2018), ‘Testing for local structure in spatiotemporal point pattern data’, Environmetrics 29, 1–19. DOI: https://doi.org/10.1002/env.2463

Stoyan, D., ertram, U. & Wendrock, H. (1993), ‘Estimation variances for estimators of product densities and pair correlation functions of planar point processes’, Annals of the Institute of Statistical Mathematics 45, 211–221. DOI: https://doi.org/10.1007/BF00775808

Stoyan, D. & Stoyan, H. (1994), Fractals, Random Shapes and Point Fields, Wiley, Chichester.

Wand, M. & Jones, M. C. (1994), Kernel smoothing, Chapman and Hall, London. Wand, M., Moler, C. & Ripley, B. (2019), KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995). R package version 2.23-16. DOI: https://doi.org/10.1201/b14876

Smoothing Supporting Wand & Jones (1995). R package. https://CRAN.R-project.org/package=KernSmooth

How to Cite

APA

Rodríguez Berrio, J. F., Rodríguez-Cortes, F. J., Mateu, J. and Adelfio, G. (2021). On Some Statistical Properties of the Spatio-Temporal Product Density. Revista Colombiana de Estadística, 44(1), 23–42. https://doi.org/10.15446/rce.v44n1.84779

ACM

[1]
Rodríguez Berrio, J.F., Rodríguez-Cortes, F.J., Mateu, J. and Adelfio, G. 2021. On Some Statistical Properties of the Spatio-Temporal Product Density. Revista Colombiana de Estadística. 44, 1 (Jan. 2021), 23–42. DOI:https://doi.org/10.15446/rce.v44n1.84779.

ACS

(1)
Rodríguez Berrio, J. F.; Rodríguez-Cortes, F. J.; Mateu, J.; Adelfio, G. On Some Statistical Properties of the Spatio-Temporal Product Density. Rev. colomb. estad. 2021, 44, 23-42.

ABNT

RODRÍGUEZ BERRIO, J. F.; RODRÍGUEZ-CORTES, F. J.; MATEU, J.; ADELFIO, G. On Some Statistical Properties of the Spatio-Temporal Product Density. Revista Colombiana de Estadística, [S. l.], v. 44, n. 1, p. 23–42, 2021. DOI: 10.15446/rce.v44n1.84779. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/84779. Acesso em: 28 mar. 2025.

Chicago

Rodríguez Berrio, Juan F., Francisco J. Rodríguez-Cortes, Jorge Mateu, and Giada Adelfio. 2021. “ On Some Statistical Properties of the Spatio-Temporal Product Density”. Revista Colombiana De Estadística 44 (1):23-42. https://doi.org/10.15446/rce.v44n1.84779.

Harvard

Rodríguez Berrio, J. F., Rodríguez-Cortes, F. J., Mateu, J. and Adelfio, G. (2021) “ On Some Statistical Properties of the Spatio-Temporal Product Density”, Revista Colombiana de Estadística, 44(1), pp. 23–42. doi: 10.15446/rce.v44n1.84779.

IEEE

[1]
J. F. Rodríguez Berrio, F. J. Rodríguez-Cortes, J. Mateu, and G. Adelfio, “ On Some Statistical Properties of the Spatio-Temporal Product Density”, Rev. colomb. estad., vol. 44, no. 1, pp. 23–42, Jan. 2021.

MLA

Rodríguez Berrio, J. F., F. J. Rodríguez-Cortes, J. Mateu, and G. Adelfio. “ On Some Statistical Properties of the Spatio-Temporal Product Density”. Revista Colombiana de Estadística, vol. 44, no. 1, Jan. 2021, pp. 23-42, doi:10.15446/rce.v44n1.84779.

Turabian

Rodríguez Berrio, Juan F., Francisco J. Rodríguez-Cortes, Jorge Mateu, and Giada Adelfio. “ On Some Statistical Properties of the Spatio-Temporal Product Density”. Revista Colombiana de Estadística 44, no. 1 (January 15, 2021): 23–42. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/84779.

Vancouver

1.
Rodríguez Berrio JF, Rodríguez-Cortes FJ, Mateu J, Adelfio G. On Some Statistical Properties of the Spatio-Temporal Product Density. Rev. colomb. estad. [Internet]. 2021 Jan. 15 [cited 2025 Mar. 28];44(1):23-42. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/84779

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Usage
  • SciELO - Full Text Views: 135
  • SciELO - Abstract Views: 11
  • Captures
  • Mendeley - Readers: 2

Article abstract page views

410

Downloads