Published

2021-01-15

On a new procedure for identifying a dynamic common factor model

Sobre un nuevo procedimiento para identificar un modelo de factores comunes dinámicos

DOI:

https://doi.org/10.15446/rce.v44n1.84816

Keywords:

Canonical correlations, Dynamic common factors, Multivariate time series. (en)
Correlación canónica, Factores comunes dinámicos, Series de tiempo multivariadas. (es)

Downloads

Authors

  • Stevenson Bolivar Departamento de Ingeniería Industrial, Pontificia Universidad Javeriana.
  • Fabio Humberto Nieto Universidad Nacional de Colombia Departamento de Estadística
  • Daniel Peña Departamento de Estadística, Universidad Carlos III de Madrid.

In the context of the exact dynamic common factor model, canonical correlations in a multivariate time series are used to identify the number of latent common factors. In this paper, we establish a relationship between canonical correlations and the autocovariance function of the factor process, in order to modify a pre-established statistical test to detect the number of common factors. In particular, the test power is increased. Additionally, we propose a procedure to identify a vector ARMA model for the factor process, which is based on the so-called simple and partial canonical autocorrelation functions. We illustrate the proposed methodology by means of some simulated examples and a real data application.

En el contexto del modelo exacto de factores comunes dinámicos, las correlaciones canónicas en series de tiempo multivariadas son usadas para identificar el número de factores latentes. En este artículo, establecemos la relación entre correlación canónica y la función de autocovarianza del proceso de los factores, con el fin de modificar una prueba estadística diseñada para identificar el número de factores comunes. En particular, se incrementa la potencia de la prueba. Adicionalmente, proponemos un procedimiento
para identificar el modelo VARMA para el proceso de los factores, el cual está basado en lo que denominamos las funciones de autocorrelación simple y parcial. Ilustramos la metodología propuesta por medio de ejemplos simulados y una aplicación con datos reales.

References

Ahn, S. C. & Horenstein, A. R. (2013), ‘Eigenvalue Ratio Test for the Number of Factors’, Econometrica 81(3), 1203–1227. DOI: https://doi.org/10.3982/ECTA8968

Anderson, T. (1984), An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series, Wiley.

Box, G. E. P. & Jenkins, G. M. (1970), Time series analysis: forecasting and control, San Francisco, CA: Holden-Day.

Doz, C. & Fuleky, P. (2020), Dynamic factor models, in ‘Macroeconomic Forecasting in the Era of Big Data’, Springer, pp. 27–64. DOI: https://doi.org/10.1007/978-3-030-31150-6_2

Geweke, J. (1977), ‘The dynamic factor analysis of economic time series models’, Latent Variables in Socio-Economic Models pp. 365–383.

Jungbacker, B. & Koopman, S. J. (2015), ‘Likelihood-Based Dynamic Factor Analysis for Measurement and Forecasting’, The Econometrics Journal 18(2), C1–C21. DOI: https://doi.org/10.1111/ectj.12029

Lam, C. & Yao, Q. (2012), ‘Factor modeling for high-dimensional time series: Inference for the number of factors 1’, Annals of Statistics 40(2), 694–726. DOI: https://doi.org/10.1214/12-AOS970

Metaxoglou, K. & Smith, A. (2007), ‘Maximun likelihood estimation of VARMA models using a state-space EM algorithm’, Journal of Time Series Analysis 28(5), 666–685. DOI: https://doi.org/10.1111/j.1467-9892.2007.00529.x

Nieto, F. H., Peña, D. & Saboyá, D. (2016), ‘Common seasonality in multivariate time series’, Statistica Sinica 26, 1389–410. DOI: https://doi.org/10.5705/ss.2014.184t

Peña, D. (2010), Análisis de series temporales, El Libro Universitario - Manuales, Alianza Editorial.

Peña, D. & Box, G. E. P. (1987), ‘Identifying a Simplifying Structure in Time Series’, Journal of the American Statistical Association 82(399), 836–843. DOI: https://doi.org/10.1080/01621459.1987.10478506

Peña, D. & Poncela, P. (2006), ‘Nonstationary dynamic factor analysis’, Journal of Statistical Planning and Inference 136(4), 1237–1257. DOI: https://doi.org/10.1016/j.jspi.2004.08.020

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, 2 edn, Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-0679-8

Stock, J. H. &Watson, M. (2011), Dynamic factor models, in P. C. Michael & D. F. DOI: https://doi.org/10.1093/oxfordhb/9780195398649.013.0003

Hendry, eds, ‘Oxford Handbook on Economic Forecasting’, Oxford University Press, Oxford.

Stock, J. H. & Watson, M. W. (2016), Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics, in J. B. Taylor & H. Uhlig, eds, ‘Handbook of macroeconomics’, Vol. 2 of Handbook of Macroeconomics, Elsevier, chapter 8, pp. 415–525. DOI: https://doi.org/10.1016/bs.hesmac.2016.04.002

Tiao, G. C. & Tsay, R. S. (1989), ‘Model specification in multivariate time series’, Journal of the Royal Statistical Society. Series B (Methodological) 51(2), 157–213. DOI: https://doi.org/10.1111/j.2517-6161.1989.tb01756.x

How to Cite

APA

Bolivar, S., Nieto, F. H. and Peña, D. (2021). On a new procedure for identifying a dynamic common factor model. Revista Colombiana de Estadística, 44(1), 1–21. https://doi.org/10.15446/rce.v44n1.84816

ACM

[1]
Bolivar, S., Nieto, F.H. and Peña, D. 2021. On a new procedure for identifying a dynamic common factor model. Revista Colombiana de Estadística. 44, 1 (Jan. 2021), 1–21. DOI:https://doi.org/10.15446/rce.v44n1.84816.

ACS

(1)
Bolivar, S.; Nieto, F. H.; Peña, D. On a new procedure for identifying a dynamic common factor model. Rev. colomb. estad. 2021, 44, 1-21.

ABNT

BOLIVAR, S.; NIETO, F. H.; PEÑA, D. On a new procedure for identifying a dynamic common factor model. Revista Colombiana de Estadística, [S. l.], v. 44, n. 1, p. 1–21, 2021. DOI: 10.15446/rce.v44n1.84816. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/84816. Acesso em: 3 dec. 2024.

Chicago

Bolivar, Stevenson, Fabio Humberto Nieto, and Daniel Peña. 2021. “On a new procedure for identifying a dynamic common factor model”. Revista Colombiana De Estadística 44 (1):1-21. https://doi.org/10.15446/rce.v44n1.84816.

Harvard

Bolivar, S., Nieto, F. H. and Peña, D. (2021) “On a new procedure for identifying a dynamic common factor model”, Revista Colombiana de Estadística, 44(1), pp. 1–21. doi: 10.15446/rce.v44n1.84816.

IEEE

[1]
S. Bolivar, F. H. Nieto, and D. Peña, “On a new procedure for identifying a dynamic common factor model”, Rev. colomb. estad., vol. 44, no. 1, pp. 1–21, Jan. 2021.

MLA

Bolivar, S., F. H. Nieto, and D. Peña. “On a new procedure for identifying a dynamic common factor model”. Revista Colombiana de Estadística, vol. 44, no. 1, Jan. 2021, pp. 1-21, doi:10.15446/rce.v44n1.84816.

Turabian

Bolivar, Stevenson, Fabio Humberto Nieto, and Daniel Peña. “On a new procedure for identifying a dynamic common factor model”. Revista Colombiana de Estadística 44, no. 1 (January 15, 2021): 1–21. Accessed December 3, 2024. https://revistas.unal.edu.co/index.php/estad/article/view/84816.

Vancouver

1.
Bolivar S, Nieto FH, Peña D. On a new procedure for identifying a dynamic common factor model. Rev. colomb. estad. [Internet]. 2021 Jan. 15 [cited 2024 Dec. 3];44(1):1-21. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/84816

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Angela Caro, Daniel Peña. (2024). Selecting the number of factors in multi‐variate time series. Journal of Time Series Analysis, https://doi.org/10.1111/jtsa.12760.

Dimensions

PlumX

Article abstract page views

418

Downloads

Download data is not yet available.