Published
On a new procedure for identifying a dynamic common factor model
Sobre un nuevo procedimiento para identificar un modelo de factores comunes dinámicos
DOI:
https://doi.org/10.15446/rce.v44n1.84816Keywords:
Canonical correlations, Dynamic common factors, Multivariate time series. (en)Correlación canónica, Factores comunes dinámicos, Series de tiempo multivariadas. (es)
Downloads
In the context of the exact dynamic common factor model, canonical correlations in a multivariate time series are used to identify the number of latent common factors. In this paper, we establish a relationship between canonical correlations and the autocovariance function of the factor process, in order to modify a pre-established statistical test to detect the number of common factors. In particular, the test power is increased. Additionally, we propose a procedure to identify a vector ARMA model for the factor process, which is based on the so-called simple and partial canonical autocorrelation functions. We illustrate the proposed methodology by means of some simulated examples and a real data application.
En el contexto del modelo exacto de factores comunes dinámicos, las correlaciones canónicas en series de tiempo multivariadas son usadas para identificar el número de factores latentes. En este artículo, establecemos la relación entre correlación canónica y la función de autocovarianza del proceso de los factores, con el fin de modificar una prueba estadística diseñada para identificar el número de factores comunes. En particular, se incrementa la potencia de la prueba. Adicionalmente, proponemos un procedimiento
para identificar el modelo VARMA para el proceso de los factores, el cual está basado en lo que denominamos las funciones de autocorrelación simple y parcial. Ilustramos la metodología propuesta por medio de ejemplos simulados y una aplicación con datos reales.
References
Ahn, S. C. & Horenstein, A. R. (2013), ‘Eigenvalue Ratio Test for the Number of Factors’, Econometrica 81(3), 1203–1227. DOI: https://doi.org/10.3982/ECTA8968
Anderson, T. (1984), An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series, Wiley.
Box, G. E. P. & Jenkins, G. M. (1970), Time series analysis: forecasting and control, San Francisco, CA: Holden-Day.
Doz, C. & Fuleky, P. (2020), Dynamic factor models, in ‘Macroeconomic Forecasting in the Era of Big Data’, Springer, pp. 27–64. DOI: https://doi.org/10.1007/978-3-030-31150-6_2
Geweke, J. (1977), ‘The dynamic factor analysis of economic time series models’, Latent Variables in Socio-Economic Models pp. 365–383.
Jungbacker, B. & Koopman, S. J. (2015), ‘Likelihood-Based Dynamic Factor Analysis for Measurement and Forecasting’, The Econometrics Journal 18(2), C1–C21. DOI: https://doi.org/10.1111/ectj.12029
Lam, C. & Yao, Q. (2012), ‘Factor modeling for high-dimensional time series: Inference for the number of factors 1’, Annals of Statistics 40(2), 694–726. DOI: https://doi.org/10.1214/12-AOS970
Metaxoglou, K. & Smith, A. (2007), ‘Maximun likelihood estimation of VARMA models using a state-space EM algorithm’, Journal of Time Series Analysis 28(5), 666–685. DOI: https://doi.org/10.1111/j.1467-9892.2007.00529.x
Nieto, F. H., Peña, D. & Saboyá, D. (2016), ‘Common seasonality in multivariate time series’, Statistica Sinica 26, 1389–410. DOI: https://doi.org/10.5705/ss.2014.184t
Peña, D. (2010), Análisis de series temporales, El Libro Universitario - Manuales, Alianza Editorial.
Peña, D. & Box, G. E. P. (1987), ‘Identifying a Simplifying Structure in Time Series’, Journal of the American Statistical Association 82(399), 836–843. DOI: https://doi.org/10.1080/01621459.1987.10478506
Peña, D. & Poncela, P. (2006), ‘Nonstationary dynamic factor analysis’, Journal of Statistical Planning and Inference 136(4), 1237–1257. DOI: https://doi.org/10.1016/j.jspi.2004.08.020
Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, 2 edn, Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-0679-8
Stock, J. H. &Watson, M. (2011), Dynamic factor models, in P. C. Michael & D. F. DOI: https://doi.org/10.1093/oxfordhb/9780195398649.013.0003
Hendry, eds, ‘Oxford Handbook on Economic Forecasting’, Oxford University Press, Oxford.
Stock, J. H. & Watson, M. W. (2016), Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics, in J. B. Taylor & H. Uhlig, eds, ‘Handbook of macroeconomics’, Vol. 2 of Handbook of Macroeconomics, Elsevier, chapter 8, pp. 415–525. DOI: https://doi.org/10.1016/bs.hesmac.2016.04.002
Tiao, G. C. & Tsay, R. S. (1989), ‘Model specification in multivariate time series’, Journal of the Royal Statistical Society. Series B (Methodological) 51(2), 157–213. DOI: https://doi.org/10.1111/j.2517-6161.1989.tb01756.x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Angela Caro, Daniel Peña. (2024). Selecting the number of factors in multi‐variate time series. Journal of Time Series Analysis, https://doi.org/10.1111/jtsa.12760.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).