Published

2021-01-15

Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)

La combinación de predicciones de series temporales de intervalo (STI)

DOI:

https://doi.org/10.15446/rce.v44n1.85116

Keywords:

efficient market hypothesis, equal weights, financial markets, forecast combination, optimal weight, random walk model (en)
hipótesis de mercado eficiente, ponderaciones iguales, mercados financieros, combinación de pronósticos, peso óptimo, modelo de caminata aleatoria (es)

Downloads

Authors

We observe every day a world more complex, uncertain, and riskier than the world of yesterday. Consequently, having accurate forecasts in economics, finance, energy, health, tourism, and so on; is more critical than ever. Moreover, there is an increasing requirement to provide other types of forecasts beyond point ones such as interval forecasts. After more than 50 years of research, there are two consensuses, “combining forecasts reduces the final forecasting error” and “a simple average of several forecasts often outperforms complicated weighting schemes”, which was named “forecast combination puzzle (FCP)”. The introduction of intervalvalued time series (ITS) concepts and several forecasting methods has been proposed in different papers and gives answers to some big data challenges. Hence, one main issue is how to combine several forecasts obtained for one ITS. This paper proposes some combination schemes with a couple or various ITS forecasts. Some of them extend previous crisp combination schemes incorporating as a novelty the use of Theil’s U. The FCP under the ITS forecasts framework will be analyzed in the context of different accuracy measures and some guidelines will be provided. An agenda for future research in the field of combining forecasts obtained for ITS will be outlined.  

Cada día observamos un mundo más complejo, incierto y con mayor riesgo que el mundo de ayer. Luego, tener pronósticos precisos en economía,
finanzas, energía, salud, turismo, etc.; es más crítico que nunca. Además, existe un requisito creciente de proporcionar otro tipo de pronósticos más
allá de los puntuales, como los pronósticos de intervalos. Después de másde 50 años de investigación, hay dos consensos, “combinar pronósticos reduce el error de pronóstico final” y “un promedio simple de varios pronósticos a menudo supera complicados esquemas de ponderación”, que
se denominó “rompecabezas de combinación de pronósticos (FCP)”. La introducción de los conceptos de series de tiempo de intervalo (ITS) y varios métodos de pronóstico se han propuesto y dan respuestas a algunos desafíos de los grandes datos. Entonces, un problema es cómo combinar varios pronósticos obtenidos para una ITS. Este documento propone algunos esquemas combinados con un par o varios pronósticos ITS. Algunos extienden esquemas previos para datos puntuales, incorporando como novedad la U de Theil. El FCP en el marco de pronósticos ITS se analizará con diferentes medidas de exactitud y se proporcionarán algunas pautas. Se describirá una agenda para futuras investigaciones en la combinación de pronósticos obtenidos para ITS.

References

Adhikari, R. & Agrawal, R. (2014), ‘A combination of artificial neural network and random walk models for financial time series forecasting’, Neural Computing and Applications 24(6), 1441–1449. DOI: https://doi.org/10.1007/s00521-013-1386-y

Aladag, C. H., Egrioglu, E. & Yolcu, U. (2010), ‘Forecast combination by using artificial neural networks’, Neural Processing Letters 32(3), 269–276. DOI: https://doi.org/10.1007/s11063-010-9156-7

Armstrong, J. S. (2001), Combined forecasts. In Principles of Forecasting: A Handbook for Researchers and Practitioners, Kluwer Academic Publishers, Norwell, MA. DOI: https://doi.org/10.1007/978-0-306-47630-3

Arroyo, J., Espínola, R. & Maté, C. (2011a), ‘Different approaches to forecastinterval time series: a comparison in finance’, Computational Economics 37(2), 169–191.

Arroyo, J., Espínola, R. & Maté, C. (2011b), ‘Different approaches to forecast interval time series: a comparison in finance’, Computational Economics 37(2), 169–191. DOI: https://doi.org/10.1007/s10614-010-9230-2

Arroyo, J., González-Rivera, G. & Maté, C. (2010), ‘Forecasting with interval and histogram data. some financial applications’, Handbook of empirical economics and finance pp. 247–280.

Arroyo, J. & Maté, C. (2006), Introducing interval time series: accuracy measures, in ‘Compstat, proceedings in computational statistics’, Heidelberg: Physica-Verlag, pp. 1139–1146.

Arroyo, J. & Maté, C. (2009), ‘Forecasting histogram time series with k-nearest neighbours methods’, International Journal of Forecasting 25(1), 192–07. DOI: https://doi.org/10.1016/j.ijforecast.2008.07.003

Atiya, A. F. (2020), ‘Why does forecast combination work so well?’, International Journal of Forecasting 36(1), 197–200. DOI: https://doi.org/10.1016/j.ijforecast.2019.03.010

Avci, E., Ketter, W. & van Heck, E. (2018), ‘Managing electricity price modeling risk via ensemble forecasting: The case of turkey’, Energy Policy 123, 390–403. DOI: https://doi.org/10.1016/j.enpol.2018.08.053

Bassetti, F., Casarin, R. & Ravazzolo, F. (2020), Density forecasting, in ‘Macroeconomic Forecasting in the Era of Big Data’, Springer, pp. 465–494. DOI: https://doi.org/10.1007/978-3-030-31150-6_15

Bates, J. M. & Granger, C. W. (1969), ‘The combination of forecasts’, Journal of the Operational Research Society 20(4), 451–468. DOI: https://doi.org/10.1057/jors.1969.103

Billard, L. & Diday, E. (2003), ‘From the statistics of data to the statistics of knowledge: Symbolic data analysis’, Journal of the American Statistical Association 98(462), 470–487. DOI: https://doi.org/10.1198/016214503000242

Billard, L. & Diday, E. (2006), Symbolic Data Analysis: Conceptual Statistics and Data Mining John Wiley, Chichester. DOI: https://doi.org/10.1002/9780470090183

Blanco-Fernández, A., Corral, N. & González-Rodríguez, G. (2011), ‘Estimation of a flexible simple linear model for interval data based on set arithmetic’, Computational Statistics & Data Analysis 55(9), 2568–2578. DOI: https://doi.org/10.1016/j.csda.2011.03.005

Buansing, T. T., Golan, A. & Ullah, A. (2020), ‘An information-theoretic approach for forecasting interval-valued sp500 daily returns’, International Journal of Forecasting 36, 800–813. DOI: https://doi.org/10.1016/j.ijforecast.2019.09.003

Chen, Y., Chen, H., Gorkhali, A., Lu, Y., Ma, Y. & Li, L. (2016), ‘Big data analytics and big data science: a survey’, Journal of Management Analytics 3(1), 1–42. DOI: https://doi.org/10.1080/23270012.2016.1141332

Clemen, R. T. (1989), ‘Combining forecasts: A review and annotated bibliography’, International Journal of Forecasting 5(4), 559–583. DOI: https://doi.org/10.1016/0169-2070(89)90012-5

de Menezes, L., Bunn, D. & Taylor, J. (2000), ‘Review of guidelines for the use of combined forecasts’, European Journal of Operational Research 120(1), 190–204. DOI: https://doi.org/10.1016/S0377-2217(98)00380-4

den Butter, F. A. & Jansen, P. W. (2013), ‘Beating the random walk: a performance assessment of long-term interest rate forecasts’, Applied Financial Economics 23(9), 749–765. DOI: https://doi.org/10.1080/09603107.2012.752570

Dickinson, J. (1975), ‘Some comments on the combination of forecasts’, Journal of the Operational Research Society 26(1), 205–210. DOI: https://doi.org/10.1057/jors.1975.43

Diebold, F. X. & Mariano, R. S. (1995), ‘Comparing predictive accuracy’, Journal of Business & Economic Statistics 13(3), 253–263. DOI: https://doi.org/10.1080/07350015.1995.10524599

Fama, E. F. (1995), ‘Random walks in stock market prices’, Financial Analysts Journal 51(1), 75–80. DOI: https://doi.org/10.2469/faj.v51.n1.1861

Fama, E. F. & Blume, M. E. (1966), ‘Filter rules and stock-market trading’, The Journal of Business 39(1), 226–41. DOI: https://doi.org/10.1086/294849

Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I. & Martínez Álvarez, F. (2019), ‘Multi-step forecasting for big data time series based on ensemble learning’, Knowledge-Based Systems 163, 830–841. DOI: https://doi.org/10.1016/j.knosys.2018.10.009

Gao, Y., Shang, H. L. & Yang, Y. (2019), ‘High-dimensional functional time series forecasting: An application to age-specific mortality rates’, Journal of Multivariate Analysis 170, 232–43. DOI: https://doi.org/10.1016/j.jmva.2018.10.003

García-Ascanio, C. & Maté, C. (2010), ‘Electric power demand forecasting using interval time series: A comparison between var and imlp’, Energy Policy 38(2), 715–725. DOI: https://doi.org/10.1016/j.enpol.2009.10.007

Genre, V., Kenny, G., Meyler, A. & Timmermann, A. (2013), ‘Combining expert forecasts: Can anything beat the simple average?’, International Journal of Forecasting 29(1), 108–121. DOI: https://doi.org/10.1016/j.ijforecast.2012.06.004

Gibbs, C. G. (2017), ‘Forecast combination, non-linear dynamics, and the macroeconomy’, Economic Theory 63(3), 653–686. DOI: https://doi.org/10.1007/s00199-016-0951-x

Glennon, D., Kiefer, H. & Mayock, T. (2018), ‘Measurement error in residential property valuation: An application of forecast combination’, Journal of Housing Economics 41, 1–9. DOI: https://doi.org/10.1016/j.jhe.2018.02.002

Gneiting, T. (2011), ‘Making and evaluating point forecasts’, Journal of the American Statistical Association 106(494), 746–762. DOI: https://doi.org/10.1198/jasa.2011.r10138

Gneiting, T. & Katzfuss, M. (2014), ‘Probabilistic forecasting’, Annual Review of Statistics and Its Application 1, 125–151. DOI: https://doi.org/10.1146/annurev-statistics-062713-085831

Hallman, J. & Kamstra, M. (1989), ‘Combining algorithms based on robust estimation techniques and co-integrating restrictions’, Journal of Forecasting 8(3), 189–198. DOI: https://doi.org/10.1002/for.3980080305

Han, A., Hong, Y., Lai, K. & Wang, S. (2008), ‘Interval time series analysis with an application to the sterling-dollar exchange rate’, Journal of Systems Science and Complexity 21(4), 550–565. DOI: https://doi.org/10.1007/s11424-008-9135-5

Han, A., Lai, K. K., Wang, S. & Xu, S. (2012), ‘An interval method for studying the relationship between the australian dollar exchange rate and the gold price’, Journal of Systems Science and Complexity 25(1), 121–132. http://link.springer.com/article/10.1007/s11424-012-8116-x DOI: https://doi.org/10.1007/s11424-012-8116-x

Hendry, D. F. & Clements, M. P. (2004), ‘Pooling of forecasts’, The Econometrics Journal 7(1), 1–31. DOI: https://doi.org/10.1111/j.1368-423X.2004.00119.x

Hsu, H.-L. & Wu, B. (2008), ‘Evaluating forecasting performance for interval data’, Computers & Mathematics with Applications 56(9), 2155–163. DOI: https://doi.org/10.1016/j.camwa.2008.03.042

Hyndman, R. J. & Koehler, A. B. (2006), ‘Another look at measures of forecast accuracy’, International journal of forecasting 22(4), 679–688. DOI: https://doi.org/10.1016/j.ijforecast.2006.03.001

Hyndman, R. J. & Shang, H. L. (2009), ‘Forecasting functional time series’, Journal of the Korean Statistical Society 38(3), 199–11. DOI: https://doi.org/10.1016/j.jkss.2009.06.002

Irpino, A. & Verde, R. (2008), ‘Dynamic clustering of interval data using a wasserstein-based distance’, Pattern Recognition Letters 29(11), 1648–1658. DOI: https://doi.org/10.1016/j.patrec.2008.04.008

Kao, C.-H., Nakano, J., Shieh, S.-H., Tien, Y.-J., Wu, H.-M., Yang, C.-K. & Chen, C.-h. (2014), ‘Exploratory data analysis of interval-valued symbolic data with matrix visualization’, Computational Statistics & Data Analysis 79, 14–29. DOI: https://doi.org/10.1016/j.csda.2014.04.012

Kourentzes, N., Barrow, D. & Petropoulos, F. (2019), ‘Another look at forecast selection and combination: Evidence from forecast pooling’, International Journal of Production Economics 209, 226–235. DOI: https://doi.org/10.1016/j.ijpe.2018.05.019

Kubica, B. J. & Malinowski, K. (2006), Interval random variables and their application in queueing systems with long-tailed service times., in ‘SMPS’, Springer, pp. 393–403. DOI: https://doi.org/10.1007/3-540-34777-1_46

Kwiatkowski, D., Phillips, P., Schmidt, P. & Shin, Y. (1992), ‘Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?’, Journal of Econometrics 54(1-3), 159–178. DOI: https://doi.org/10.1016/0304-4076(92)90104-Y

Le-Rademacher, J. & Billard, L. (2012), ‘Symbolic covariance principal component analysis and visualization for interval-valued data’, Journal of Computational and Graphical Statistics 21(2), 413–432. DOI: https://doi.org/10.1080/10618600.2012.679895

Li, H., Wang, J., Lu, H. & Guo, Z. (2018), ‘Research and application of a combined model based on variable weight for short term wind speed forecasting’, Renewable Energy 116, 669–684. DOI: https://doi.org/10.1016/j.renene.2017.09.089

Lima Neto, E. & De Carvalho, F. (2010), ‘Constrained linear regression models for symbolic interval-valued variables’, Computational Statistics and Data Analysis 54, 333–347. DOI: https://doi.org/10.1016/j.csda.2009.08.010

Maia, A. L. S. & de Carvalho, F. d. A. (2011), ‘Holts exponential smoothing and neural network models for forecasting interval-valued time series’, International Journal of Forecasting 27(3), 740–759. DOI: https://doi.org/10.1016/j.ijforecast.2010.02.012

Maia, A. L. S., de Carvalho, F. d. A. & Ludermir, T. B. (2008), ‘Forecasting models for interval-valued time series’, Neurocomputing 71(16-18), 3344–3352. DOI: https://doi.org/10.1016/j.neucom.2008.02.022

Makridakis, S., Spiliotis, E. & Assimakopoulos, V. (2020), ‘The m4 competition: 100,000 time series and 61 forecasting methods’, International Journal of Forecasting 36(1), 54–74. DOI: https://doi.org/10.1016/j.ijforecast.2019.04.014

Maté, C. (2012), ‘The Bayesian model averaging approach for interval-valued data. 3 rd workshop in symbolic data analysis’, pp. 47–48.

Maté, C. G. (2011), ‘A multivariate analysis approach to forecasts combination. application to foreign exchange (fx) markets’, Revista Colombiana de Estadística 34(2), 347–375.

Moral-Benito, E. (2015), ‘Model averaging in economics: An overview’, Journal of Economic Surveys 29(1), 46–75. DOI: https://doi.org/10.1111/joes.12044

Muñoz, A., Maté, C., Arroyo, J. & Sarabia, A. (2007), ‘iMLP: applying multilayer perceptrons to interval-valued data’, Neural Processing Letters 25(2), 157–169. DOI: https://doi.org/10.1007/s11063-007-9035-z

Naseer, M., bin Tariq, Y. et al. (2015), ‘The efficient market hypothesis: A critical review of the literature’, IUP Journal of Financial Risk Management 12(4), 48–63.

Nelson, C. R. & Plosser, C. R. (1982), ‘Trends and random walks in macroeconomic time series: some evidence and implications’, Journal of Monetary Economics 10(2), 139–162. DOI: https://doi.org/10.1016/0304-3932(82)90012-5

Noirhomme-Fraiture, M. & Brito, P. (2011), ‘Far beyond the classical data models: symbolic data analysis’, Statistical Analysis and Data Mining: the ASA Data Science Journal 4(2), 157–170. DOI: https://doi.org/10.1002/sam.10112

Ordiano, J. Á. G., Bartschat, A., Ludwig, N., Braun, E., Waczowicz, S., Renkamp, N., Peter, N., Düpmeier, C., Mikut, R. & Hagenmeyer, V. (2018), ‘Concept and benchmark results for big data energy forecasting based on apache spark’, Journal of Big Data 5(1), 11. DOI: https://doi.org/10.1186/s40537-018-0119-6

Phillips, P. C. & Perron, P. (1988), ‘Testing for a unit root in time series regression’, Biometrika 75(2), 335–346. DOI: https://doi.org/10.1093/biomet/75.2.335

Ramos-Guajardo, A. B., González-Rodríguez, G. & Colubi, A. (2020), ‘Testing the degree of overlap for the expected value of random intervals’, International Journal of Approximate Reasoning 119, 1–19. DOI: https://doi.org/10.1016/j.ijar.2019.12.012

Rapach, D. & Zhou, G. (2013), Forecasting stock returns, in ‘Handbook of economic forecasting’, Vol. 2, Elsevier, pp. 328–383. DOI: https://doi.org/10.1016/B978-0-444-53683-9.00006-2

Riddington, G. (1993), ‘Time varying coefficient models and their forecasting performance’, Omega 21(5), 573–583. DOI: https://doi.org/10.1016/0305-0483(93)90026-H

Rodrigues, P. M. & Salish, N. (2015), ‘Modeling and forecasting interval time series with threshold models’, Advances in Data Analysis and Classification 9(1), 41–57. DOI: https://doi.org/10.1007/s11634-014-0170-x

Sarno, L. & Valente, G. (2005), ‘Empirical exchange rate models and currency risk: Some evidence from density forecasts’, Journal of International Money and Finance 24(2), 363–385. DOI: https://doi.org/10.1016/j.jimonfin.2004.12.011

Shaub, D. (2020), ‘Fast and accurate yearly time series forecasting with forecast combinations’, International Journal of Forecasting 36(1), 116–120. DOI: https://doi.org/10.1016/j.ijforecast.2019.03.032

Sinova, B., Casals, M. R., Colubi, A. & Gil, M. Á. (2010), The median of a random interval, in ‘Combining Soft Computing and Statistical Methods in Data Analysis’, Springer, pp. 575–583. DOI: https://doi.org/10.1007/978-3-642-14746-3_71

Sinova, B., Colubi, A., González-Rodrı, G. et al. (2012), ‘Interval arithmetic based simple linear regression between interval data: Discussion and sensitivity analysis on the choice of the metric’, Information Sciences 199, 109–124. DOI: https://doi.org/10.1016/j.ins.2012.02.040

Sinova, B. & Van Aelst, S. (2015), ‘On the consistency of a spatial-type intervalvalued median for random intervals’, Statistics & Probability Letters 100, 130–136. DOI: https://doi.org/10.1016/j.spl.2015.02.014

Smith, J. & Wallis, K. F. (2009), ‘A simple explanation of the forecast combination puzzle’, Oxford Bulletin of Economics and Statistics 71(3), 331–355. DOI: https://doi.org/10.1111/j.1468-0084.2008.00541.x

Song, H. & Liu, H. (2017), Predicting tourist demand using big data, in ‘Analytics in smart tourism design’, Springer, pp. 13–29. DOI: https://doi.org/10.1007/978-3-319-44263-1_2

Stock, J. H. & Watson, M. W. (2004), ‘Combination forecasts of output growth in a seven-country data set’, Journal of Forecasting 23(6), 405–430. DOI: https://doi.org/10.1002/for.928

Stock, J. H. & Watson, M. W. (2006), ‘Forecasting with many predictors’, Handbook of economic forecasting 1, 515–554. DOI: https://doi.org/10.1016/S1574-0706(05)01010-4

Tay, A. S. & Wallis, K. F. (2000), ‘Density forecasting: a survey’, Journal of Forecasting 19(4), 235–54. DOI: https://doi.org/10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L

Thomson, M. E., Pollock, A. C., Önkal, D. & Gönül, M. S. (2019), ‘Combining forecasts: Performance and coherence’, International Journal of Forecasting 35(2), 474–484. DOI: https://doi.org/10.1016/j.ijforecast.2018.10.006

Timmermann, A. (2006), ‘Forecast combinations’, Handbook of Economic Forecasting 1, 135–196. DOI: https://doi.org/10.1016/S1574-0706(05)01004-9

Wang, J. & Wu, J. J. (2012), ‘The Taylor rule and forecast intervals for exchange rates’, Journal of Money, Credit and banking 44(1), 103–144. DOI: https://doi.org/10.1111/j.1538-4616.2011.00470.x

Winkler, R. L. & Clemen, R. T. (1992), ‘Sensitivity of weights in combining forecasts’, Operations Research 40(3), 609–614. DOI: https://doi.org/10.1287/opre.40.3.609

Zhang, W., Liu, J., Cho, C. & Han, X. (2015), ‘A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures’, Mechanical Systems and Signal Processing 60, 853–865. DOI: https://doi.org/10.1016/j.ymssp.2015.02.009

How to Cite

APA

Maté, C. (2021). Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda). Revista Colombiana de Estadística, 44(1), 123–157. https://doi.org/10.15446/rce.v44n1.85116

ACM

[1]
Maté, C. 2021. Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda). Revista Colombiana de Estadística. 44, 1 (Jan. 2021), 123–157. DOI:https://doi.org/10.15446/rce.v44n1.85116.

ACS

(1)
Maté, C. Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda). Rev. colomb. estad. 2021, 44, 123-157.

ABNT

MATÉ, C. Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda). Revista Colombiana de Estadística, [S. l.], v. 44, n. 1, p. 123–157, 2021. DOI: 10.15446/rce.v44n1.85116. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/85116. Acesso em: 28 mar. 2025.

Chicago

Maté, Carlos. 2021. “Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)”. Revista Colombiana De Estadística 44 (1):123-57. https://doi.org/10.15446/rce.v44n1.85116.

Harvard

Maté, C. (2021) “Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)”, Revista Colombiana de Estadística, 44(1), pp. 123–157. doi: 10.15446/rce.v44n1.85116.

IEEE

[1]
C. Maté, “Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)”, Rev. colomb. estad., vol. 44, no. 1, pp. 123–157, Jan. 2021.

MLA

Maté, C. “Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)”. Revista Colombiana de Estadística, vol. 44, no. 1, Jan. 2021, pp. 123-57, doi:10.15446/rce.v44n1.85116.

Turabian

Maté, Carlos. “Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda)”. Revista Colombiana de Estadística 44, no. 1 (January 15, 2021): 123–157. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/85116.

Vancouver

1.
Maté C. Combining Interval Time Series Forecasts. A First Step in a Long Way (Research Agenda). Rev. colomb. estad. [Internet]. 2021 Jan. 15 [cited 2025 Mar. 28];44(1):123-57. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/85116

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Carlos Maté, Lucía Jimeńez. (2021). Forecasting exchange rates with the iMLP: New empirical insight on one multi-layer perceptron for interval time series (ITS). Engineering Applications of Artificial Intelligence, 104, p.104358. https://doi.org/10.1016/j.engappai.2021.104358.

2. Carlos G. Maté. (2022). Forecasting in FOREX the spot price interval of tomorrow with the same information of today. An analysis of the seven majors using a linear regression model based on interval arithmetic. Knowledge-Based Systems, 258, p.109923. https://doi.org/10.1016/j.knosys.2022.109923.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 2
  • Usage
  • SciELO - Full Text Views: 288
  • SciELO - Abstract Views: 12
  • Captures
  • Mendeley - Readers: 11
  • Mendeley - Readers: 3

Article abstract page views

314

Downloads