Published
Variable Selection in Switching Dynamic Regression Models
Selección de variables en modelos de regresión dinámicos de cambios de régimen
DOI:
https://doi.org/10.15446/rce.v45n1.85385Keywords:
Dirichlet process, State-space model, Hierarchical model, Bayesian filtering and smoothing (en)Proceso Dirichlet, Modelo de Espacio-estado, Modelo jerárquico, Filtering and smoothing bayesianos (es)
Downloads
Complex dynamic phenomena in which dynamics is related to events (modes) that cause structural changes over time, are well described by the switching linear dynamical system (SLDS). We extend the SLDS by allowing the measurement noise to be mode-specific, a flexible way to model non stationary data. Additionally, for models that are functions of explanatory variables, we adapt a variable selection method to identify which of them are significant in each mode. Our proposed model is a flexible Bayesian nonparametric model that allows to learn about the number of modes and their location, and within each mode, it identifies the significant variables and estimates the regression coefficients. The model performance is evaluated by simulation and two application examples from a dataset of meteorological time series of Barranquilla, Colombia are presented.
Fenómenos dinámicos complejos en los que la dinámica está relacionada con eventos (modos) que provocan cambios estructurales a lo largo del tiempo, se aproximan mediante un sistema dinámico lineal de cambio de régimen (SDLR). Extendemos el SDLR al permitir que el error de medición sea específico del modo, una forma flexible de modelar datos no estacionarios. Además, para los modelos que son funciones de variables explicativas, adaptamos un método de selección de variables para identificar cuáles de ellas son significativas en cada modo. El modelo propuesto es un modelo bayesiano no paramétrico flexible que permite conocer el número de modos y su ubicación, y dentro de cada modo, identifica las variables significativas
y estima los coeficientes de regresión. El desempeño del modelo se evalúa
mediante simulación y se presentan dos ejemplos de aplicación de un conjunto de datos de series de tiempo meteorológicas de Barranquilla, Colombia.
References
Antoniak, C. (1974), ‘Mixtures of dirichlet processes with applications to bayesian nonparametric problems’, The Annals of Statistics 2(6), 1152–1174. DOI: https://doi.org/10.1214/aos/1176342871
Barber, D. (2012), Bayesian Reasoning and Machine Learning, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511804779
Bishop, C. (2006), Pattern Recognition and Machine Learning, Springer.
Blackwell, D. & MacQueen, J. (1973), ‘Ferguson distributions via Polya urn schemes’, The Annals of Statistics 1(2), 353–355. DOI: https://doi.org/10.1214/aos/1176342372
Bregler, C. (1997, June), Learning and recognizing human dynamics in video sequences, in ‘Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition’, pp. 568–574.
Carvalho, C. & Lopes, H. (2007), ‘Simulation based sequential analysis of markov switching stochastic volatility models’, Computational Statistics and Data Analysis 51, 4526–4542. DOI: https://doi.org/10.1016/j.csda.2006.07.019
Du, K., Mu, C., Deng, J. & Yuan, F. (2013), ‘Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of environmental internet of things in china’, International Journal of Sustainable Development and World Ecology 20(3), 238–247. DOI: https://doi.org/10.1080/13504509.2013.783886
Escobar, M. (1988), Estimating the Means of Several Normal Populations by Nonparametric Estimation of the Distribution of the Means, PhD thesis, Yale University.
Escobar, M. & West, M. (1995), ‘Bayesian density estimation and inference using mixtures’, Journal of the American Statistical Association 90(430), 577–588. DOI: https://doi.org/10.1080/01621459.1995.10476550
Ferguson, T. (1973), ‘A bayesian analysis of some nonparametric problems’, The Annals of Statistics 1(2), 209–230. DOI: https://doi.org/10.1214/aos/1176342360
Fox, E., Sudderth, E., Jordan, M. & Willsky, A. (2011a), ‘Bayesian nonparametric inference of switching dynamic linear models’, IEEE Transactions on signal processing 59(4), 1569–1585. DOI: https://doi.org/10.1109/TSP.2010.2102756
Fox, E., Sudderth, E., Jordan, M. & Willsky, A. (2011b), ‘A sticky hdp-hmm with application to speaker diarization’, The Annals of Applied Statistics 5(2A), 1020–1056. DOI: https://doi.org/10.1214/10-AOAS395
Han, M., Ren, W. & Liu, X. (2015), ‘Joint mutual information-based input variable selection for multivariate time series modeling’, Engineering Applications of Artificial Intelligence 37, 250–257. DOI: https://doi.org/10.1016/j.engappai.2014.08.011
Huang, W., Tan, J., Kan, H., Zhao, N., Song, W., Song, G., Chen, G., Jiang, L., Jiang, C., Chen, R. & Chen, B. (2009), ‘Visibility, air quality and daily mortality in shanghai, china’, Science of The Total Environment 407(10), 3295–3300. DOI: https://doi.org/10.1016/j.scitotenv.2009.02.019
Huerta, G., Sansó, B. & Stroud, J. R. (2004), ‘A spatiotemporal model for mexico city ozone levels’, Journal of the Royal Statistical Society 53(2), 231–248. DOI: https://doi.org/10.1046/j.1467-9876.2003.05100.x
Ishwaran, H. & James, L. (2001), ‘Gibbs sampling methods for stick-breaking priors’, Journal of the American Statistical Association 96(453), 161–173. DOI: https://doi.org/10.1198/016214501750332758
Ishwaran, H. & James, L. (2002), ‘Approximate dirichlet process computing in finite normal mixtures: Smoothing and prior information’, Journal of Computational and Graphical Statistics 11(3), 1–26. DOI: https://doi.org/10.1198/106186002411
Ishwaran, H. & Zarepour, M. (2000), ‘Markov chain monte carlo in approximate dirichlet and beta two-parameter process hierarchical models’, Biometrika 87(2), 371–390. DOI: https://doi.org/10.1093/biomet/87.2.371
Ishwaran, H. & Zarepour, M. (2002a), ‘Dirichlet prior sieves in finite normal mixtures’, Statistica Sinica 12(3), 941–963.
Ishwaran, H. & Zarepour, M. (2002b), ‘Exact and approximate sum representations for the dirichlet process’, The Canadian Journal of Statistics 30(2), 269–283. DOI: https://doi.org/10.2307/3315951
Kalman, R. (1960), ‘A new approach to linear filtering and prediction problems’, Journal of Basic Engineering 82, 35–45. DOI: https://doi.org/10.1115/1.3662552
Kalman, R. (1963), ‘Mathematical description of linear dynamical systems’, Journal of the Society for Industrial and Applied Mathematics 1(2), 152–192. DOI: https://doi.org/10.1137/0301010
Kim, C. (1994), ‘Dynamic linear models with markov switching’, Journal of Econometrics 60(1-2), 1–22. DOI: https://doi.org/10.1016/0304-4076(94)90036-1
Kuo, L. & Mallick, B. (1998), ‘Variable selection for regression models’, The Indian Journal of Statistics. Special Issue on Bayesian Analysis 60(1), 65–81.
Lamon III, E., Carpenter, S. & Stow, C. (1998), ‘Forecasting PCB concentrations in Lake Michigan salmonids: a dynamic linear model approach’, Ecological Applications 8(3), 659–668. DOI: https://doi.org/10.1890/1051-0761(1998)008[0659:FPCILM]2.0.CO;2
MacEachern, S. N. (1994), ‘Estimating normal means with a conjugate style dirichlet process prior’, Communications in Statistics-Simulation and Computation 23(3), 727–741. DOI: https://doi.org/10.1080/03610919408813196
Majewski, G., Kleniewska, M. & Brandyk, A. (2011), ‘Seasonal variation of particulate matter mass concentration and content of metals’, Polish Journal of Environmental Studies 20(2), 417–427.
Majewski, G., Rogula-Kozłowska, W., Czechowski, P. O., Badyda, A. & Brandyk, A. (2015), ‘he impact of selected parameters on visibility: First results from a long-term campaign in warsaw, poland’, Atmosphere 6, 1154–1174. DOI: https://doi.org/10.3390/atmos6081154
McAlinn, K. & West, M. (2016), Dynamic bayesian predictive synthesis in time series forecasting, Technical report, Duke University.
Meinhold, R. & Singpurwalla, N. (1983), ‘Understanding the kalman filter’, The American Statistician 37(2), 123–127. DOI: https://doi.org/10.1080/00031305.1983.10482723
National Centers for Environmental Information (2021), ‘Local climatological data’. https://www.ncei.noaa.gov/data/local-climatological-data/
Pavlović, V., Rehg, J. & MacCormick, J. (2001), Learning switching linear models of human motion., in ‘Advances in Neural Information Processing Systems’, Vol. 13, Neural Information Processing Systems (NIPS) 2000.
Petris, G., Petrone, S. & Campagnoli, P. (2009), Dynamic Linear Models with R, Springer-Verlag. DOI: https://doi.org/10.1007/b135794_2
Rauch, H., Striebel, C. & Tung, F. (1965), ‘Maximum likelihood estimates of linear dynamic systems’, AIAA Journal 3(8), 1445–1450. DOI: https://doi.org/10.2514/3.3166
Redner, R. & Walker, H. (1984), ‘Mixture densities, maximum likelihood and the em algorithm’, SIAM Review 26(2), 195–239. DOI: https://doi.org/10.1137/1026034
Rodríguez, A. (2007), Some Advances in Bayesian Nonparametric Modeling, PhD thesis, Duke University.
Sethuraman, J. (1994), ‘A constructive definition of dirichlet priors’, Statistica Sinica 4, 639–650.
Stephens, M. (2000), ‘Dealing with label switching in mixture models’, Journal of the Royal Statistical Society 62(4), 795–809. DOI: https://doi.org/10.1111/1467-9868.00265
Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. (2006), ‘Hierarchical dirichlet processes’, Journal of the American Statistical Association 101, 1566–1581. DOI: https://doi.org/10.1198/016214506000000302
Thach, T.-Q., Wong, C.-M., Chan, K.-P., Chau, Y.-K., Chung, Y.-N., Ou, C.-Q., Yang, L. & Hedley, A. J. (2010), ‘Daily visibility and mortality: Assessment of health benefits from improved visibility in hong kong’, Environmental Research 110(6), 617–623. DOI: https://doi.org/10.1016/j.envres.2010.05.005
Tsai, Y., Kuo, S.-C., Lee, W.-J., Chen, C.-L. & Chen, P.-T. (2007), ‘Long-term visibility trends in one highly urbanized, one highly industrialized, and two rural areas of taiwan’, Science of The Total Environment 382(2-3), 324–341. DOI: https://doi.org/10.1016/j.scitotenv.2007.04.048
Velasco-Cruz, C., Leman, S. C., Hudy, M. & Smith, E. P. (2012), ‘Assessing the risk of rising temperature on brook trout: a spatial dynamic linear risk model’, Journal of Agricultural, Biological, and Environmental Statistics 17(2), 246–264. DOI: https://doi.org/10.1007/s13253-012-0088-8
Wang, L. & Wang, X. (2013), ‘Hierarchical dirichlet process model for gene expression clustering’, EURASIP Journal on Bioinformatics and Systems Biology 1(5). DOI: https://doi.org/10.1186/1687-4153-2013-5
Watson, A., Ramirez, C. & Salud, E. (2009), ‘Predicting visibility of aircraft’, PLOS ONE 5(7), 1–16. DOI: https://doi.org/10.1371/annotation/be07af21-d5b4-4cb3-b311-a3fc275cd9aa
West, M. (2013), Bayesian Dynamic Modelling, Oxford University Press, chapter 8.
West, M. & Harrison, J. (1997), Bayesian Forecasting and Dynamic Models, 2 edn, Springer.
Zeng, Y. & Wu, S., eds (2013), State-space models. Applications in Economics and Finance, Springer. DOI: https://doi.org/10.1007/978-1-4614-7789-1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2022 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).