Published
Results on the Fractional Cumulative Residual Entropy of Coherent Systems
Resultados en la entropia residual acumulativa fraccional de sistemas coherentes
DOI:
https://doi.org/10.15446/rce.v44n2.86562Keywords:
Fractional cumulative residual entropy, Paired entropy, Coherent systems. (en)Entropia residual acumulativa fraccionada, Entropia pareada, Sistemas coherentes (es)
Downloads
Recently, Xiong et al. (2019) introduced an alternative measure of uncertainty known as the fractional cumulative residual entropy (FCRE). In this paper, first, we study some general properties of FCRE and its dynamic version. We also consider a version of fractional cumulative paired entropy for a random lifetime. Then we apply the FCRE measure for the coherent system lifetimes with identically distributed components.
Recientemente, Xiong et al. (2019) introdujeron una medida alternativa de incertidumbre conocida como entropia residual acumulativa fraccionada (FCRE). En este articulo, primero, estudiamos algunas propiedades generales de FCRE y su version dynami. También consideramos una version de entropia pareada acumulativa fraccionaria para una vida aleatoria. Luego, aplicamos la medida FCRE para la vida util del sistema coherente con componentes distribuidos de manera idéntica.
References
Asadi, M. & Zohrevand, Y. (2007), 'On the dynamic cumulative residual entropy', Journal of Statistical Planning and Inference 137(6), 1931-1941. DOI: https://doi.org/10.1016/j.jspi.2006.06.035
Burkschat, M. & Navarro, J. (2018), 'Stochastic comparisons of systems based on sequential order statistics via properties of distorted distributions', Probability in the Engineering and Informational Sciences 32(2), 246-274. DOI: https://doi.org/10.1017/S0269964817000018
Calì, C., Longobardi, M. & Navarro, J. (2020), 'Properties for generalized cumulative past measures of information', Probability in the Engineering and Informational Sciences 34(1), 92-111. DOI: https://doi.org/10.1017/S0269964818000360
Da Costa Bueno, V. & Balakrishnan, N. (2020), 'A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes ', Probability in the Engineering and Informational Sciences pp. 1-26. DOI: https://doi.org/10.1017/S0269964820000637
Di Crescenzo, A. & Longobardi, M. (2009), 'On cumulative entropies', Journal of Statistical Planning and Inference 139(12), 4072-4087. DOI: https://doi.org/10.1016/j.jspi.2009.05.038
Klein, I., Mangold, B. & Doll, M. (2016), 'Cumulative paired '-entropy', Entropy 18(7), 248. DOI: https://doi.org/10.3390/e18070248
Longobardi, M. (2014), 'Cumulative measures of information and stochastic orders', Ricerche di Matematica 63(1), 209-223. DOI: https://doi.org/10.1007/s11587-014-0212-x
Murthy, D. P., Xie, M. & Jiang, R. (2004), Weibull Models, Vol. 505, John Wiley & Sons.
Navarro, J., del Águila, Y., Sordo, M. A. & Suárez-Llorens, A. (2013), 'Stochastic ordering properties for systems with dependent identically distributed components', Applied Stochastic Models in Business and Industry 29(3), 264-278. DOI: https://doi.org/10.1002/asmb.1917
Navarro, J. & Psarrakos, G. (2017), 'Characterizations based on generalized cumulative residual entropy functions', Communications in Statistics-Theory and Methods 46(3), 1247-1260. DOI: https://doi.org/10.1080/03610926.2015.1014111
Psarrakos, G. & Navarro, j. (2013), 'Generalized cumulative residual entropy and record values', Metrika 76(5), 623-640. DOI: https://doi.org/10.1007/s00184-012-0408-6
Psarrakos, G. & Toomaj, A. (2017), 'On the generalized cumulative residual entropy with applications in actuarial science', Journal of Computational and Applied Mathematics 309, 186-199. DOI: https://doi.org/10.1016/j.cam.2016.06.037
Rahimi, S., Tahmasebi, S. & Lak, F. (2020), 'Extended cumulative entropy based on k th lower record values for the coherent systems lifetime', Journal of Inequalities and Applications 2020(1), 1-22. DOI: https://doi.org/10.1186/s13660-020-02464-z
Rao, M., Chen, Y., Vemuri, B. C. & Wang, F. (2004), 'Cumulative residual entropy: a new easure of information', IEEE transactions on Information Theory 50(6), 1220-1228. DOI: https://doi.org/10.1109/TIT.2004.828057
Shaked, M. & Shanthikumar, J. G. (2007), Stochastic Orders, Springer, New York. Shannon, C. (1948), 'A mathematical theory of communication', Bell System Technical Journal 27, 379-432. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Tahmasebi, S., Keshavarz, A., Longobardi, M. & Mohammadi, R. (2020), 'A shiftdependent measure of extended cumulative entropy and iIts applications in blind image quality ', Symmetry 12(2), 316. DOI: https://doi.org/10.3390/sym12020316
Toomaj, A., Di Crescenzo, A. & Doostparast, M. (2018), 'Some results on information properties of coherent systems', Applied Stochastic Models in Business and Industry 34(2), 128-143. DOI: https://doi.org/10.1002/asmb.2277
Toomaj, A., Sunoj, S. M. & Navarro, J. (2017), 'Some properties of the cumulative residual entropy of coherent and mixed systems', Journal of Applied Probability 54(2), 379. DOI: https://doi.org/10.1017/jpr.2017.6
Ubriaco, M. R. (2009), 'Entropies based on fractional calculus', Physics Letters A 373(30), 2516-2519. DOI: https://doi.org/10.1016/j.physleta.2009.05.026
Xiong, H., Shang, P. & Zhang, Y. (2019), 'Fractional cumulative residual entropy', Communications in Nonlinear Science and Numerical Simulation 78, 104879. DOI: https://doi.org/10.1016/j.cnsns.2019.104879
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Shital Saha, Suchandan Kayal. (2023). Extended fractional cumulative past and pairedϕ-entropy measures. Physica A: Statistical Mechanics and its Applications, 614, p.128552. https://doi.org/10.1016/j.physa.2023.128552.
2. Mohamed Kayid, Mansour Shrahili. (2022). Some Further Results on the Fractional Cumulative Entropy. Entropy, 24(8), p.1037. https://doi.org/10.3390/e24081037.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).