Published

2021-07-12

Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity

Estimación eficiente a través de raza y etnicidad usando análisis factorial jerárquico bayesiano

DOI:

https://doi.org/10.15446/rce.v44n2.87690

Keywords:

patient reported outcomes, factor analysis, differential item functioning, Bayesian hierarchical factor analysis, health disparity, American Indian (en)
Análisis factorial, Disparidades en salud, Funcionamiento diferencial de ítems, Indígena americano, Modelo jerárquico Bayesiano, Respuestas reportadas por el paciente (es)

Downloads

Authors

  • Jinxiang Hu Department of Biostatistics & Data Science, University of Kansas Medical Center
  • Lauren Clark Department of Biostatistics & Data Science, University of Kansas Medical Center
  • Peng Shi Department of Biostatistics & Data Science, University of Kansas Medical Center
  • Vincent Staggs Biostatistics & Epidemiology Core, Health Services & Outcomes Research, Children’s Mercy Kansas City, and University of Missouri-Kansas City School of Medicine
  • Christine Daley Department of Family Medicine, University of Kansas Medical Center
  • Byron Gajewski Department of Biostatistics & Data Science, University of Kansas Medical Center

Patient reported outcomes are gaining more attention in patient-centered health outcomes research and quality of life studies as important indicators of clinical outcomes, especially for patients with chronic diseases. Factor analysis is ideal for measuring patient reported outcomes. If there is heterogeneity in the patient population and when sample size is small, differential item functioning and convergence issues are challenges for applying factor models. Bayesian hierarchical factor analysis can assess health disparity by assessing for di˙erential item functioning, while avoiding convergence problems. We conducted a simulation study and used an empirical example with American Indian minorities to show thatffitting a Bayesian hierarchical factor model is an optimal solution regardless of heterogeneity of population and sample size.

Las repuestas reportadas por el paciente están siendo fuertemente consideradas en la investigación de respuestas de salud centradas en el paciente y en estudios de calidad de vida comos indicadores importantes de respuestas clínicas, especialmente en pacientes con enfermedades crónicas. El análisis factorial es ideal para medir respuestas reportadas por el paciente. Cuando hay heterogeneidad en la población de pacientes y el tamaño muestral es pequeño, diferencias en el funcionamiento de los ítems y problemas de convergencia plantean dificultades para aplicar modelos factoriales. El análisis factorial jerárquico Bayesiano puede evaluar disparidades de salud evaluando el funcionamiento diferencial de los ítems, mientras que evita problemas de convergencia. Hemos realizado un estudio de simulación y empleado un ejemplo empírico con minorías indígenas Americanas para mostrar que el ajuste de un modelo factorial jerárquico Bayesiano es una solución óptima sin importar la heterogeneidad de la población o el tamaño muestral.

References

Asparouhov, T., & Muthén, B. (2010a). Bayesian analysis using Mplus: Technical implementation. Retrieved from https://www.statmodel.com/download/Bayes3.pdf

Asparouhov, T., & Muthén, B. (2010b). Bayesian analysis of latent variable models using Mplus. Retrieved from https://www.statmodel.com/download/BayesAdvantages18.pdf

Bell, S. A., & Smith, C. T. (2014). A comparison of interventional clinical trials in rare versus non-rare diseases: an analysis of Clinical Trials. gov. Orphanet Journal of Rare Diseases, 9(1), 170. DOI: https://doi.org/10.1186/s13023-014-0170-0

Basch, E., Bennett, A., & Pietanza, M. C. (2011). Use of Patient-Reported Outcomes to Improve the Predictive Accuracy of Clinician-Reported Adverse Events. Journal of the National Cancer Institute, 103(24), 1808-1810. doi:10.1093/jnci/djr493 DOI: https://doi.org/10.1093/jnci/djr493

Bruce, B., & Fries, J. F. (2003). The Stanford Health Assessment Questionnaire: a review of its history, issues, progress, and documentation. The Journal of rheumatology, 30(1), 167-178.

Calvert, M., Kyte, D., Mercieca-Bebber, R., Slade, A., Chan, A. W., King, M. T., ... & O’Connor, D. (2018). Guidelines for inclusion of patient-reported outcomes in clinical trial protocols: the SPIRIT-PRO extension. Jama, 319(5), 483-494. DOI: https://doi.org/10.1001/jama.2017.21903

Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., ... & Cook, K. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179-1194. DOI: https://doi.org/10.1016/j.jclinepi.2010.04.011

Chaloner, K. (1987). A Bayesian approach to the estimation of variance components for the unbalanced one-way random model. Technometrics, 29(3), 323-337. DOI: https://doi.org/10.1080/00401706.1987.10488242

Cuijpers, P., Li, J. A., Hofmann, S. G., & Andersson, G. (2010). Self-reported versus clinician rated symptoms of depression as outcome measures in psychotherapy research on depression: A meta-analysis. Clinical Psychology Review, 30(6), 768-778. Doi:10.1016/j.cpr.2010.06.001 DOI: https://doi.org/10.1016/j.cpr.2010.06.001

Dawson, J., Doll, H., Fitzpatrick, R., Jenkinson, C., & Carr, A. J. (2010). The routine use of patient reported outcome measures in healthcare settings. BMJ, 340, c186. DOI: https://doi.org/10.1136/bmj.c186

Deshpande, P. R., Rajan, S., Sudeepthi, B. L., & Nazir, C. P. (2011). Patient-reported outcomes: A new era in clinical research. Perspectives in clinical research, 2(4), 137. DOI: https://doi.org/10.4103/2229-3485.86879

Doward, L. C., Gnanasakthy, A., & Baker, M. G. (2010). Patient reported outcomes: looking beyond the label claim. Health and Quality of Life Outcomes, 8(1), 89. DOI: https://doi.org/10.1186/1477-7525-8-89

Drasgow, F. (1987). Study of the measurement bias of two standardized psychological tests. Journal of Applied Psychology, 72, 19–29. DOI: https://doi.org/10.1037/0021-9010.72.1.19

Engelman, K.K., Daley, C.M., Gajewski, B.J., Ndikum-Moffor, F., Faseru, B., & Braiuca, S. (2010). An assessment of American Indian women's mammography experiences. BMC Women's Health, 10(1):34. DOI: https://doi.org/10.1186/1472-6874-10-34

European Medicines Agency. (2016). Appendix 2 to the Guideline on the Evaluation of Anticancer Medicinal Products in Man: The Use of Patient-Reported Outcome (PRO) Measures in Oncology Studies. Retrieved from https://www.ema.europa.eu/en/documents/other/appendix-2-guideline-evaluation-anticancer-medicinal-products-man_en.pdf

Frost, M. H., Reeve, B. B., Liepa, A. M., Stauffer, J. W., Hays, R. D., & Mayo/FDA Patient‐Reported Outcomes Consensus Meeting Group. (2007). What is sufficient evidence for the reliability and validity of patient‐reported outcome measures? Value in Health, 10, S94-S105. DOI: https://doi.org/10.1111/j.1524-4733.2007.00272.x

Gajewski, B. J., Meinzer, C., Berry, S. M., Rockswold, G. L., Barsan, W. G., Korley, F. K., & Martin, R. H. (2019). Bayesian hierarchical EMAX model for dose‐response in early phase efficacy clinical trials. Statistics in medicine, 38(17):3123-3138. DOI: https://doi.org/10.1002/sim.8167

Gamerman, D., & Lopes, H.F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Boca Raton: Chapman & hall/CRC. DOI: https://doi.org/10.1201/9781482296426

Garrard, L., Price, L. R., Bott, M. J., & Gajewski, B. J. (2015). A novel method for expediting the development of patient-reported outcome measures and an evaluation of its performance via simulation. BMC medical research methodology, 15(1), 77. DOI: https://doi.org/10.1186/s12874-015-0071-5

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian analysis, 1(3), 515-534. DOI: https://doi.org/10.1214/06-BA117A

Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analysis. Second edition. Boca Raton: Chapman & Hall. DOI: https://doi.org/10.1201/9780429258480

Ghosh, J., & Dunson, D. B. (2008). Bayesian model selection in factor analytic models. In Random effect and latent variable model selection (pp. 151-163). Springer, New York. DOI: https://doi.org/10.1007/978-0-387-76721-5_7

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. DOI: https://doi.org/10.1080/19345747.2011.618213

Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. Chapman and HallCRC. DOI: https://doi.org/10.1201/b14835

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer and H. I. Braun (Dirs.), Test validity. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, I. (2018). Evaluating model fit in Bayesian confirmatory factor analysis with large samples: Simulation study introducing the BRMSEA. Educational and Psychological Measurement, 78(4), 537-568. DOI: https://doi.org/10.1177/0013164417709314

Jiang, Y., Boyle, D. K., Bott, M. J., Wick, J. A., Yu, Q., & Gajewski, B. J. (2014). Expediting clinical and translational research via Bayesian instrument development. Applied psychological measurement, 38(4), 296-310. DOI: https://doi.org/10.1177/0146621613517165

Joreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631-639. DOI: https://doi.org/10.1080/01621459.1975.10482485

Joreskog, K. G., Sorbom, D., & Magidson, J. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental science, 10(3), 307-321. DOI: https://doi.org/10.1111/j.1467-7687.2007.00585.x

Kruschke, J.K. (2010). Doing Bayesian data analysis: A tutorial with R and BUGS. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.3161&rep=rep1&type=pdf

Kwok, H., & Lewis, R. J. (2011). Bayesian hierarchical modeling and the integration of heterogeneous information on the effectiveness of cardiovascular therapies. Circulation: Cardiovascular Quality and Outcomes, 4(6), 657-666. DOI: https://doi.org/10.1161/CIRCOUTCOMES.111.960724

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and computing, 10(4), 325-337. DOI: https://doi.org/10.1023/A:1008929526011

Lynch, S.M. (2010). Introduction to applied Bayesian statistics and estimation for social scientists. New York: Springer.

Lee, S.Y. (2007). Structural equation modeling: A Bayesian approach. Chichester: John Wiley & Sons. DOI: https://doi.org/10.1002/9780470024737

MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226. DOI: https://doi.org/10.1146/annurev.psych.51.1.201

MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: the problem of capitalization on chance. Psychological Bulletin, 111(3), 490. DOI: https://doi.org/10.1037/0033-2909.111.3.490

Marsh, H.W., Muthén, B., Asparouhov, A., Ldtke, O., Robitzsch, A., Morin, A.J.S., & Trautwein, U. (2009). Exploratory structural equation modeling, Integrating CFA and EFA: Application to Students’ Evaluations of University Teaching. Structural Equation Modeling, 16(3), 439-476. DOI: https://doi.org/10.1080/10705510903008220

McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750-773. DOI: https://doi.org/10.1080/10705511.2016.1186549

Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. Retrieved from http://www.statmodel.com/download/IntroBayesVersion%201.pdf

Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81-117. DOI: https://doi.org/10.2333/bhmk.29.81

Muthén, B., & Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335. DOI: https://doi.org/10.1037/a0026802

Ndikum-Moffor, F. M., Braiuca, S., Daley, C. M., Gajewski, B. J., & Engelman, K. K. (2013). Assessment of mammography experiences and satisfaction among American Indian/Alaska Native women. Women's Health Issues, 23(6), e395-e402. DOI: https://doi.org/10.1016/j.whi.2013.08.003

Patient-Reported Outcomes Measurement Information System (PROMIS). (2019). Retrieved from https://commonfund.nih.gov/promis/index

Press, S.J. (2009). Subjective and objective Bayesian statistics: principles, models, and applications (Vol.590). New York: John Wiley & Sons.

Samaniego, F. J., & Reneau, D. M. (1994). Toward a reconciliation of the Bayesian and frequentist approaches to point estimation. Journal of the American Statistical Association, 89(427), 947-957. DOI: https://doi.org/10.1080/01621459.1994.10476828

Sanderson, T., & Kirwan, J. (2009). Patient-reported outcomes for arthritis: time to focus on personal life impact measures? Arthritis Rheumatology, 61(1), 1-3. doi:10.1002/art.24270 DOI: https://doi.org/10.1002/art.24270

Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64(1), 37-52. DOI: https://doi.org/10.1007/BF02294318

Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A Package for Running WinBUGS from R. Journal of Statistical Software, 12(3), 1-16. DOI: https://doi.org/10.18637/jss.v012.i03

Swaminathan, H. and Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361-370. DOI: https://doi.org/10.1111/j.1745-3984.1990.tb00754.x

Thissen, D. J., Steinberg, L., & Wainer, H. (1988). Use of item response theory in the study of group differences in trace lines. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 147-169). Hillsdale, NJ: Lawrence Erlbaum.

Tunis, S. R., Stryer, D. B., & Clancy, C. M. (2003). Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. Jama, 290(12), 1624-1632. DOI: https://doi.org/10.1001/jama.290.12.1624

US Food and Drug Administration. (2009). Guidance for Industry: Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims. Retrieved from https://www.fda.gov/media/77832/download

Ware Jr, J. E., Kosinski, M., & Bjorner, J. B. (2004). Item banking and the improvement of health status measures. Quality of Life, 2, 2-5.

How to Cite

APA

Hu, J., Clark, L., Shi, P., Staggs, V., Daley, C. and Gajewski, B. (2021). Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity. Revista Colombiana de Estadística, 44(2), 313–329. https://doi.org/10.15446/rce.v44n2.87690

ACM

[1]
Hu, J., Clark, L., Shi, P., Staggs, V., Daley, C. and Gajewski, B. 2021. Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity. Revista Colombiana de Estadística. 44, 2 (Jul. 2021), 313–329. DOI:https://doi.org/10.15446/rce.v44n2.87690.

ACS

(1)
Hu, J.; Clark, L.; Shi, P.; Staggs, V.; Daley, C.; Gajewski, B. Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity. Rev. colomb. estad. 2021, 44, 313-329.

ABNT

HU, J.; CLARK, L.; SHI, P.; STAGGS, V.; DALEY, C.; GAJEWSKI, B. Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity. Revista Colombiana de Estadística, [S. l.], v. 44, n. 2, p. 313–329, 2021. DOI: 10.15446/rce.v44n2.87690. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/87690. Acesso em: 4 aug. 2024.

Chicago

Hu, Jinxiang, Lauren Clark, Peng Shi, Vincent Staggs, Christine Daley, and Byron Gajewski. 2021. “Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity”. Revista Colombiana De Estadística 44 (2):313-29. https://doi.org/10.15446/rce.v44n2.87690.

Harvard

Hu, J., Clark, L., Shi, P., Staggs, V., Daley, C. and Gajewski, B. (2021) “Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity”, Revista Colombiana de Estadística, 44(2), pp. 313–329. doi: 10.15446/rce.v44n2.87690.

IEEE

[1]
J. Hu, L. Clark, P. Shi, V. Staggs, C. Daley, and B. Gajewski, “Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity”, Rev. colomb. estad., vol. 44, no. 2, pp. 313–329, Jul. 2021.

MLA

Hu, J., L. Clark, P. Shi, V. Staggs, C. Daley, and B. Gajewski. “Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity”. Revista Colombiana de Estadística, vol. 44, no. 2, July 2021, pp. 313-29, doi:10.15446/rce.v44n2.87690.

Turabian

Hu, Jinxiang, Lauren Clark, Peng Shi, Vincent Staggs, Christine Daley, and Byron Gajewski. “Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity”. Revista Colombiana de Estadística 44, no. 2 (July 12, 2021): 313–329. Accessed August 4, 2024. https://revistas.unal.edu.co/index.php/estad/article/view/87690.

Vancouver

1.
Hu J, Clark L, Shi P, Staggs V, Daley C, Gajewski B. Bayesian Hierarchical Factor Analysis for Efficient Estimation Across Race/Ethnicity. Rev. colomb. estad. [Internet]. 2021 Jul. 12 [cited 2024 Aug. 4];44(2):313-29. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/87690

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Vincent W.S. Tseng, Jordan A. Tharp, Jacob E. Reiter, Weston Ferrer, David S. Hong, P. Murali Doraiswamy, Stefanie Nickels, Richard L. Schilsky, Jennifer Allen, MaryAnn Anderson, Kevin Anstrom, Lucus Araujo, Kristine Arges, Kaveh Ardalan, Bridget Baldwin, Suresh Balu, Mustafa R. Bashir, Manju Bhapkar, Robert Bigelow, Tanya Black, Rosalia Blanco, Gerald Bloomfield, Durga Borkar, Leah Bouk, Ebony Boulware, Nikki Brugnoni, Erin Campbell, Paul Campbell, Larry Carin, Tammy Jo Cassella, Tina Cates, Ranee Chatterjee Montgomery, Victoria Christian, John Choong, Michael Cohen-Wolkowiez, Elizabeth Cook, Scott Cousins, Ashley Crawford, Nisha Datta, Melissa Daubert, James Davis, Jillian Dirkes, Isabelle Doan, Marie Dockery, Pamela S. Douglas, Shelly Duckworth, Ashley Dunham, Gary Dunn, Ryan Ebersohl, Julie Eckstrand, Vivienne Fang, April Flora, Emily Ford, Lucia Foster, Elizabeth Fraulo, John French, Geoffrey S. Ginsburg, Cindy Green, Latoya Greene, Jeffrey Guptill, Donna Hamel, Jennifer Hamill, Chris Harrington, Rob Harrison, Lauren Hedges, Brooke Heidenfelder, Adrian F. Hernandez, Cindy Heydary, Tim Hicks, Lina Hight, Deborah Hopkins, Erich S. Huang, Grace Huh, Jillian Hurst, Kelly Inman, Gemini Janas, Glenn Jaffee, Janace Johnson, Tiffanie Keaton, Michel Khouri, Daniel King, Jennifer Korzekwinski, Lynne H. Koweek, Anthony Kuo, Lydia Kwee, Dawn Landis, Rachele Lipsky, Desiree Lopez, Carolyn Lowry, Kelly Marcom, Keith Marsolo, Paige McAdams, Shannon McCall, Robert McGarrah, John McGugan, Dani Mee, Sabrena Mervin-Blake, Prithu Mettu, Mathias Meyer, Justin Meyers, Calire N. Miller, Rebecca Moen, Lawrence H. Muhlbaier, Michael Murphy, Ben Neely, L. Kristin Newby, Jayne Nicoldson, Hoang Nguyen, Maggie Nguyen, Lori O'Brien, Sumru Onal, Jeremey O'Quinn, David Page, Neha J. Pagidipati, Kishan Parikh, Sarah R. Palmer, Bray Patrick-Lake, Brenda Pattison, Michael Pencina, Eric D. Peterson, Jon Piccini, Terry Poole, Tom Povsic, Alicia Provencher, Dawn Rabineau, Annette Rich, Susan Rimmer, Fides Schwartz, Angela Serafin, Nishant Shah, Svati Shah, Kelly Shields, Steven Shipes, Peter Shrader, Jon Stiber, Lynn Sutton, Geeta Swamy, Betsy Thomas, Sandra Torres, Debara Tucci, Anthony Twisdale, Brooke Walker, Susan A. Whitney, Robin Williamson, Lauren Wilverding, Charlene A. Wong, Lisa Wruck, Ellen Young, Jane Perlmutter, Sarah Krug, S. Whitney Bowman-Zatzkin, Sarah Krug, Themistocles Assimes, Vikram Bajaj, Maxwell Cheong, Millie Das, Manisha Desai, Alice C. Fan, Dominik Fleischmann, Sanjiv S. Gambhir, Garry Gold, Francois Haddad, David Hong, Curtis Langlotz, Yaping J. Liao, Rong Lu, Kenneth W. Mahaffey, David Maron, Rebecca McCue, Rajan Munshi, Fatima Rodriguez, Sumana Shashidhar, George Sledge, Susie Spielman, Ryan Spitler, Sue Swope, Donna Williams, Carl J Pepine, John D Lantos, Michael Pignone, Patrick Heagerty, Laura Beskow, Gordon Bernard, Kelley Abad, Giulia Angi, Robert M. Califf, Lawrence Deang, Joy Huynh, Manway Liu, Cherry Mao, Michael Magdaleno, William J. Marks, Jessica Mega, David Miller, Nicole Ong, Darshita Patel, Vanessa Ridaura, Scarlet Shore, Sarah Short, Michelle Tran, Veronica Vu, Celeste Wong, Robert C. Green, John Hernandez, Jolene Benge, Gislia Negrete, Gelsey Sierra, Terry Schaack. (2024). Identifying a stable and generalizable factor structure of major depressive disorder across three large longitudinal cohorts. Psychiatry Research, 333, p.115702. https://doi.org/10.1016/j.psychres.2023.115702.

Dimensions

PlumX

Article abstract page views

202

Downloads

Download data is not yet available.