Published
A Review of Latent Space Models for Social Networks
Una revisión de modelos de espacio latente para redes sociales
DOI:
https://doi.org/10.15446/rce.v44n1.89369Keywords:
Bayesian Inference, Markov chain Monte Carlo, Latent Space Models, Social Networks (en)Cadena de Makov de Monte Carlo, Inferencia Bayesiana, Modelo de espacio latente, Redes sociales (es)
Downloads
In this paper, we provide a review on both fundamentals of social networks and latent space modeling. The former discusses important topics related to network description, including vertex characteristics and network structure; whereas the latter articulates relevant advances in network modeling, including random graph models, generalized random graph models, exponential random graph models, and social space models. We discuss in detail several latent space models provided in literature, providing special attention to distance, class, and eigen models in the context of undirected, binary networks. In addition, we also examine empirically the behavior of these models in terms of prediction and goodness-of-fit using more than twenty popular datasets of the network literature.
temas importantes relacionados con la descripción de la red, incluidas las características de los vértices y la estructura de la red; mientras que la segunda articula avances relevantes en el modelado de redes, incluidos modelos de grafos aleatorios, modelos de grafos aleatorios generalizados, modelos de grafos aleatorios exponenciales y modelos de espacio social. Discutimos en detalle varios modelos de espacio latente proporcionados en la literatura, prestando especial atención a los modelos de distancia, clase y eigen, en el contexto de redes binarias no dirigidas. Además, también examinamos empíricamente el comportamiento de estos modelos en términos de predicción y bondad de ajuste utilizando más de veinte conjuntos de datos populares de la literatura de redes.
References
Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. (2009), Mixed membership stochastic blockmodels, in ‘Advances in Neural Information Processing Systems’, pp. 33–40.
Albert, J. H. & Chib, S. (1993), ‘Bayesian analysis of binary and polychotomous response data’, Journal of the American Statistical Association 88(422), 669–679. DOI: https://doi.org/10.1080/01621459.1993.10476321
Aldous, D. J. (1985), Exchangeability and related topics, Springer. Barabási, A.-L. & Albert, R. (1999), ‘Emergence of scaling in random networks’, Science 286(5439), 509–512. DOI: https://doi.org/10.1126/science.286.5439.509
Bender, E. A. & Canfield, E. R. (1978), ‘The asymptotic number of labeled graphs with given degree sequences’, Journal of Combinatorial Theory, Series A 24(3), 296–307. DOI: https://doi.org/10.1016/0097-3165(78)90059-6
Bollobás, B. (1998), Random graphs, Springer. DOI: https://doi.org/10.1007/978-1-4612-0619-4_7
Borg, I. & Groenen, P. J. (2005), Modern multidimensional scaling: Theory and applications, Springer Science & Business Media.
Chung, F. & Lu, L. (2006), Complex graphs and networks, Vol. 107, American Mathematical society Providence. DOI: https://doi.org/10.1090/cbms/107
Crane, H. (2018), Probabilistic foundations of statistical network analysis, CRC Press. DOI: https://doi.org/10.1201/9781315209661
Durante, D., Dunson, D. B. et al. (2018), ‘Bayesian inference and testing of group differences in brain networks’, Bayesian Analysis 13(1), 29–58. DOI: https://doi.org/10.1214/16-BA1030
Erdös, P. & Rényi, A. (1959), ‘On random graphs’, Publicationes Mathematicae 6(290-297), 5. DOI: https://doi.org/10.5486/PMD.1959.6.3-4.12
Erdös, P. & Rényi, A. (1960), ‘On the evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci 5, 17–61.
Erdös, P. & Rényi, A. (1961), ‘On the strength of connectedness of a random graph’, Acta Mathematica Hungarica 12(1-2), 261–267. DOI: https://doi.org/10.1007/BF02066689
Fortunato, S. (2010), ‘Community detection in graphs’, Physics reports 486(3), 75–174. DOI: https://doi.org/10.1016/j.physrep.2009.11.002
Frank, O. & Strauss, D. (1986), ‘Markov graphs’, Journal of the American Statistical association 81(395), 832–842. DOI: https://doi.org/10.1080/01621459.1986.10478342
Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, CRC Press. DOI: https://doi.org/10.1201/9781482296426
Gelman, A., Hwang, J. & Vehtari, A. (2014), ‘Understanding predictive information criteria for Bayesian models’, Statistics and Computing 24(6), 997–1016. DOI: https://doi.org/10.1007/s11222-013-9416-2
Gelman, A. & Rubin, D. (1992), ‘Inferences from iterative simulation using multiple sequences’, Statistical Science 7, 457–472. DOI: https://doi.org/10.1214/ss/1177011136
Gilbert, E. (1959), ‘Random graphs’, The Annals of Mathematical Statistics pp. 1141–1144. DOI: https://doi.org/10.1214/aoms/1177706098
Goldenberg, A., Zheng, A., Fienberg, S. & Airoldi, E. (2010), ‘A survey of statistical network models’, Foundations and Trends in Machine Learning 2(2), 129–233. DOI: https://doi.org/10.1561/2200000005
Green, P. J. & Hastie, D. I. (2009), ‘Reversible jump MCMC, Genetics 155(3), 1391–1403.
Guhaniyogi, R. & Rodriguez, A. (2020), ‘Joint modeling of longitudinal relational data and exogenous variables’, Bayesian Analysis. DOI: https://doi.org/10.1214/19-BA1160
Han, Q., Xu, K. & Airoldi, E. (2015), Consistent estimation of dynamic and multi-layer block models, in ‘International Conference on Machine Learning’, pp. 1511–1520.
Handcock, M. S., Raftery, A. E. & Tantrum, J. M. (2007), ‘Model-based clustering for social networks’, Journal of the Royal Statistical Society: Series A (Statistics in Society) 170(2), 301–354. DOI: https://doi.org/10.1111/j.1467-985X.2007.00471.x
Handcock, M. S., Robins, G., Snijders, T., Moody, J. & Besag, J. (2003), Assessing degeneracy in statistical models of social networks, Technical report, Citeseer.
Hoff, P. D. (2005), ‘Bilinear mixed-effects models for dyadic data’, Journal of the American Statistical Association 100(469), 286–295. DOI: https://doi.org/10.1198/016214504000001015
Hoff, P. D. (2008), Modeling homophily and stochastic equivalence in symmetric relational data, in ‘Advances in Neural Information Processing Systems’, pp. 657–664.
Hoff, P. D. (2009), ‘Multiplicative latent factor models for description and prediction of social networks’, Computational and Mathematical Organization Theory 15(4), 261–272. DOI: https://doi.org/10.1007/s10588-008-9040-4
Hoff, P. D. (2015), ‘Multilinear tensor regression for longitudinal relational data’, The annals of applied statistics 9(3), 1169. DOI: https://doi.org/10.1214/15-AOAS839
Hoff, P. D., Raftery, A. E. & Handcock, M. S. (2002), ‘Latent space approaches to social network analysis’, Journal of the American Statistical association 97(460), 1090–1098. DOI: https://doi.org/10.1198/016214502388618906
Hoover, D. N. (1982), ‘Row-column exchangeability and a generalized model for probability’, Exchangeability in probability and statistics (Rome, 1981) pp. 281–291.
Ishwaran, H. & Zarepour, M. (2000), ‘Markov chain monte Carlo in approximate dirichlet and beta two-parameter process hierarchical models’, Biometrika 87(2), 371–390. DOI: https://doi.org/10.1093/biomet/87.2.371
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. & Ueda, N. (2006), Learning systems of concepts with an infinite relational model, in ‘AAAI’, Vol. 3, p. 5.
Kim, B., Lee, K. H., Xue, L. & Niu, X. (2018), ‘A review of dynamic network models with latent variables’, Statistics surveys 12, 105. DOI: https://doi.org/10.1214/18-SS121
Kolaczyk, E. D. (2009), Statistical Analysis of Network Data: Methods and Models, Springer Series in Statistics, Springer. DOI: https://doi.org/10.1007/978-0-387-88146-1
Kolaczyk, E. D. & Csárdi, G. (2020), Statistical analysis of network data with R, 2nd edn, Springer. DOI: https://doi.org/10.1007/978-3-030-44129-6
Krivitsky, P. N. & Handcock, M. S. (2008), ‘Fitting latent cluster models for networks with latentnet’, Journal of Statistical Software 24(5). DOI: https://doi.org/10.18637/jss.v024.i05
Krivitsky, P. N., Handcock, M. S., Raftery, A. E. & Hoff, P. D. (2009), ‘Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models’, Social networks 31(3), 204–213. DOI: https://doi.org/10.1016/j.socnet.2009.04.001
Lau, J. W. & Green, P. J. (2007), ‘Bayesian model-based clustering procedures’, Journal of Computational and Graphical Statistics 16(3), 526–558. DOI: https://doi.org/10.1198/106186007X238855
Li, W.-J., Yeung, D.-Y. & Zhang, Z. (2011), Generalized latent factor models for social network analysis, in ‘Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain’.
Linkletter, C. D. (2007), Spatial process models for social network analysis, PhD thesis, Simon Fraser University.
Lusher, D., Koskinen, J. & Robins, G. (2012), Exponential random graph models for social networks: Theory, methods, and applications, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511894701
Minhas, S., Hoff, P. D. & Ward, M. D. (2019), ‘Inferential approaches for network analysis: Amen for latent factor models’, Political Analysis 27(2), 208–222. DOI: https://doi.org/10.1017/pan.2018.50
Newman, M. (2010), Networks: An Introduction, Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199206650.003.0001
Newman, M. & Watts, D. J. (1999), ‘Scaling and percolation in the small-world network model’, Physical Review E 60(6), 7332. DOI: https://doi.org/10.1103/PhysRevE.60.7332
Nowicki, K. & Snijders, T. (2001), ‘Estimation and prediction for stochastic blockstructures’, Journal of the American Statistical Association 96(455), 1077–1087. DOI: https://doi.org/10.1198/016214501753208735
Paez, M. S., Amini, A. A. & Lin, L. (2019), ‘Hierarchical stochastic block model for community detection in multiplex networks’, arXiv preprint arXiv:1904.05330 .
Polson, N. G., Scott, J. G. & Windle, J. (2013), ‘Bayesian inference for logistic models using Pólya-Gamma latent variables’, Journal of the American Statistical Association 108(504), 1339–1349. DOI: https://doi.org/10.1080/01621459.2013.829001
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Nikolaos Nakis, Abdulkadir Çelikkanat, Sune Lehmann, Morten Mørup. (2024). A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations. IEEE Transactions on Knowledge and Data Engineering, 36(4), p.1399. https://doi.org/10.1109/TKDE.2023.3304344.
2. Wenli Zhang, Yuxin Liu, Chenhuizi Wang, Chao Zheng, Guoqiang Cui, Wei Guo. (2024). EasyDAM_V4: Guided-GAN-based cross-species data labeling for fruit detection with significant shape difference. Horticulture Research, 11(3) https://doi.org/10.1093/hr/uhae007.
3. Andreas Schmitz, Christian Schmidt-Wellenburg, Jonas Volle. (2025). Integrating geometric data analysis and network analysis by iterative reciprocal mapping. The example of the German field of sociology. Poetics, 108, p.101947. https://doi.org/10.1016/j.poetic.2024.101947.
4. Yi Chen, Jingru Zhang, Yi Yang, Young‐Sun Lee. (2022). Latent Space Model for Process Data. Journal of Educational Measurement, 59(4), p.517. https://doi.org/10.1111/jedm.12337.
5. Juan Sosa, Brenda Betancourt. (2022). A latent space model for multilayer network data. Computational Statistics & Data Analysis, 169, p.107432. https://doi.org/10.1016/j.csda.2022.107432.
6. Juan Sosa, Abel Rodríguez. (2024). A Bayesian approach for de-duplication in the presence of relational data. Journal of Applied Statistics, 51(2), p.197. https://doi.org/10.1080/02664763.2022.2118678.
7. Selena Wang, Yiting Wang, Frederick H. Xu, Li Shen, Yize Zhao. (2025). Establishing group-level brain structural connectivity incorporating anatomical knowledge under latent space modeling. Medical Image Analysis, 99, p.103309. https://doi.org/10.1016/j.media.2024.103309.
8. Carolina Luque, Juan Sosa. (2023). A Bayesian spatial voting model to characterize the legislative behavior of the Colombian Senate 2010–2014. Journal of Applied Statistics, 50(16), p.3362. https://doi.org/10.1080/02664763.2022.2111678.
9. Zhumengmeng Jin, Juan Sosa, Shangchen Song, Brenda Betancourt. (2024). A robust Bayesian latent position approach for community detection in networks with continuous attributes. Journal of Applied Statistics, , p.1. https://doi.org/10.1080/02664763.2024.2431736.
10. Yan Zhang, Rui Pan, Xuening Zhu, Kuangnan Fang, Hansheng Wang. (2024). A Latent Space Model for Weighted Keyword Co-Occurrence Networks with Applications in Knowledge Discovery in Statistics. Journal of Computational and Graphical Statistics, , p.1. https://doi.org/10.1080/10618600.2024.2407465.
11. Juan Sosa, Brenda Betancourt. (2023). Bayesian inference of financial networks. Model Assisted Statistics and Applications, 18(4), p.295. https://doi.org/10.3233/MAS-231456.
12. Selena Wang, Yiting Wang, Frederick H. Xu, Xinyuan Tian, Carolyn A. Fredericks, Li Shen, Yize Zhao. (2024). Sex‐specific topological structure associated with dementia via latent space estimation. Alzheimer's & Dementia, 20(12), p.8387. https://doi.org/10.1002/alz.14266.
13. Guanghui Wang, Yushan Wang, Kaidi Liu, Shu Sun. (2024). A classification and recognition algorithm of key figures in public opinion integrating multidimensional similarity and K-shell based on supernetwork. Humanities and Social Sciences Communications, 11(1) https://doi.org/10.1057/s41599-024-02711-4.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).