Published

2021-01-15 — Updated on 2021-01-15

A Review of Latent Space Models for Social Networks

Una revisión de modelos de espacio latente para redes sociales

DOI:

https://doi.org/10.15446/rce.v44n1.89369

Keywords:

Bayesian Inference, Markov chain Monte Carlo, Latent Space Models, Social Networks (en)
Cadena de Makov de Monte Carlo, Inferencia Bayesiana, Modelo de espacio latente, Redes sociales (es)

Downloads

Authors

  • Juan Sosa Universidad Nacional de Colombia
  • Lina Buitrago Universidad Nacional de Colombia

In this paper, we provide a review on both fundamentals of social networks and latent space modeling. The former discusses important topics related to network description, including vertex characteristics and network structure; whereas the latter articulates relevant advances in network modeling, including random graph models, generalized random graph models, exponential random graph models, and social space models. We discuss in detail several latent space models provided in literature, providing special attention to distance, class, and eigen models in the context of undirected, binary networks. In addition, we also examine empirically the behavior of these models in terms of prediction and goodness-of-fit using more than twenty popular datasets of the network literature.

En este artículo, proporcionamos una revisión sobre los fundamentos de redes sociales y el modelamiento de espacio latente. La primera trata
temas importantes relacionados con la descripción de la red, incluidas las características de los vértices y la estructura de la red; mientras que la segunda articula avances relevantes en el modelado de redes, incluidos modelos de grafos aleatorios, modelos de grafos aleatorios generalizados, modelos de grafos aleatorios exponenciales y modelos de espacio social. Discutimos en detalle varios modelos de espacio latente proporcionados en la literatura, prestando especial atención a los modelos de distancia, clase y eigen, en el contexto de redes binarias no dirigidas. Además, también examinamos empíricamente el comportamiento de estos modelos en términos de predicción y bondad de ajuste utilizando más de veinte conjuntos de datos populares de la literatura de redes.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. (2009), Mixed membership stochastic blockmodels, in ‘Advances in Neural Information Processing Systems’, pp. 33–40.

Albert, J. H. & Chib, S. (1993), ‘Bayesian analysis of binary and polychotomous response data’, Journal of the American Statistical Association 88(422), 669–679. DOI: https://doi.org/10.1080/01621459.1993.10476321

Aldous, D. J. (1985), Exchangeability and related topics, Springer. Barabási, A.-L. & Albert, R. (1999), ‘Emergence of scaling in random networks’, Science 286(5439), 509–512. DOI: https://doi.org/10.1126/science.286.5439.509

Bender, E. A. & Canfield, E. R. (1978), ‘The asymptotic number of labeled graphs with given degree sequences’, Journal of Combinatorial Theory, Series A 24(3), 296–307. DOI: https://doi.org/10.1016/0097-3165(78)90059-6

Bollobás, B. (1998), Random graphs, Springer. DOI: https://doi.org/10.1007/978-1-4612-0619-4_7

Borg, I. & Groenen, P. J. (2005), Modern multidimensional scaling: Theory and applications, Springer Science & Business Media.

Chung, F. & Lu, L. (2006), Complex graphs and networks, Vol. 107, American Mathematical society Providence. DOI: https://doi.org/10.1090/cbms/107

Crane, H. (2018), Probabilistic foundations of statistical network analysis, CRC Press. DOI: https://doi.org/10.1201/9781315209661

Durante, D., Dunson, D. B. et al. (2018), ‘Bayesian inference and testing of group differences in brain networks’, Bayesian Analysis 13(1), 29–58. DOI: https://doi.org/10.1214/16-BA1030

Erdös, P. & Rényi, A. (1959), ‘On random graphs’, Publicationes Mathematicae 6(290-297), 5. DOI: https://doi.org/10.5486/PMD.1959.6.3-4.12

Erdös, P. & Rényi, A. (1960), ‘On the evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci 5, 17–61.

Erdös, P. & Rényi, A. (1961), ‘On the strength of connectedness of a random graph’, Acta Mathematica Hungarica 12(1-2), 261–267. DOI: https://doi.org/10.1007/BF02066689

Fortunato, S. (2010), ‘Community detection in graphs’, Physics reports 486(3), 75–174. DOI: https://doi.org/10.1016/j.physrep.2009.11.002

Frank, O. & Strauss, D. (1986), ‘Markov graphs’, Journal of the American Statistical association 81(395), 832–842. DOI: https://doi.org/10.1080/01621459.1986.10478342

Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, CRC Press. DOI: https://doi.org/10.1201/9781482296426

Gelman, A., Hwang, J. & Vehtari, A. (2014), ‘Understanding predictive information criteria for Bayesian models’, Statistics and Computing 24(6), 997–1016. DOI: https://doi.org/10.1007/s11222-013-9416-2

Gelman, A. & Rubin, D. (1992), ‘Inferences from iterative simulation using multiple sequences’, Statistical Science 7, 457–472. DOI: https://doi.org/10.1214/ss/1177011136

Gilbert, E. (1959), ‘Random graphs’, The Annals of Mathematical Statistics pp. 1141–1144. DOI: https://doi.org/10.1214/aoms/1177706098

Goldenberg, A., Zheng, A., Fienberg, S. & Airoldi, E. (2010), ‘A survey of statistical network models’, Foundations and Trends in Machine Learning 2(2), 129–233. DOI: https://doi.org/10.1561/2200000005

Green, P. J. & Hastie, D. I. (2009), ‘Reversible jump MCMC, Genetics 155(3), 1391–1403.

Guhaniyogi, R. & Rodriguez, A. (2020), ‘Joint modeling of longitudinal relational data and exogenous variables’, Bayesian Analysis. DOI: https://doi.org/10.1214/19-BA1160

Han, Q., Xu, K. & Airoldi, E. (2015), Consistent estimation of dynamic and multi-layer block models, in ‘International Conference on Machine Learning’, pp. 1511–1520.

Handcock, M. S., Raftery, A. E. & Tantrum, J. M. (2007), ‘Model-based clustering for social networks’, Journal of the Royal Statistical Society: Series A (Statistics in Society) 170(2), 301–354. DOI: https://doi.org/10.1111/j.1467-985X.2007.00471.x

Handcock, M. S., Robins, G., Snijders, T., Moody, J. & Besag, J. (2003), Assessing degeneracy in statistical models of social networks, Technical report, Citeseer.

Hoff, P. D. (2005), ‘Bilinear mixed-effects models for dyadic data’, Journal of the American Statistical Association 100(469), 286–295. DOI: https://doi.org/10.1198/016214504000001015

Hoff, P. D. (2008), Modeling homophily and stochastic equivalence in symmetric relational data, in ‘Advances in Neural Information Processing Systems’, pp. 657–664.

Hoff, P. D. (2009), ‘Multiplicative latent factor models for description and prediction of social networks’, Computational and Mathematical Organization Theory 15(4), 261–272. DOI: https://doi.org/10.1007/s10588-008-9040-4

Hoff, P. D. (2015), ‘Multilinear tensor regression for longitudinal relational data’, The annals of applied statistics 9(3), 1169. DOI: https://doi.org/10.1214/15-AOAS839

Hoff, P. D., Raftery, A. E. & Handcock, M. S. (2002), ‘Latent space approaches to social network analysis’, Journal of the American Statistical association 97(460), 1090–1098. DOI: https://doi.org/10.1198/016214502388618906

Hoover, D. N. (1982), ‘Row-column exchangeability and a generalized model for probability’, Exchangeability in probability and statistics (Rome, 1981) pp. 281–291.

Ishwaran, H. & Zarepour, M. (2000), ‘Markov chain monte Carlo in approximate dirichlet and beta two-parameter process hierarchical models’, Biometrika 87(2), 371–390. DOI: https://doi.org/10.1093/biomet/87.2.371

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. & Ueda, N. (2006), Learning systems of concepts with an infinite relational model, in ‘AAAI’, Vol. 3, p. 5.

Kim, B., Lee, K. H., Xue, L. & Niu, X. (2018), ‘A review of dynamic network models with latent variables’, Statistics surveys 12, 105. DOI: https://doi.org/10.1214/18-SS121

Kolaczyk, E. D. (2009), Statistical Analysis of Network Data: Methods and Models, Springer Series in Statistics, Springer. DOI: https://doi.org/10.1007/978-0-387-88146-1

Kolaczyk, E. D. & Csárdi, G. (2020), Statistical analysis of network data with R, 2nd edn, Springer. DOI: https://doi.org/10.1007/978-3-030-44129-6

Krivitsky, P. N. & Handcock, M. S. (2008), ‘Fitting latent cluster models for networks with latentnet’, Journal of Statistical Software 24(5). DOI: https://doi.org/10.18637/jss.v024.i05

Krivitsky, P. N., Handcock, M. S., Raftery, A. E. & Hoff, P. D. (2009), ‘Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models’, Social networks 31(3), 204–213. DOI: https://doi.org/10.1016/j.socnet.2009.04.001

Lau, J. W. & Green, P. J. (2007), ‘Bayesian model-based clustering procedures’, Journal of Computational and Graphical Statistics 16(3), 526–558. DOI: https://doi.org/10.1198/106186007X238855

Li, W.-J., Yeung, D.-Y. & Zhang, Z. (2011), Generalized latent factor models for social network analysis, in ‘Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain’.

Linkletter, C. D. (2007), Spatial process models for social network analysis, PhD thesis, Simon Fraser University.

Lusher, D., Koskinen, J. & Robins, G. (2012), Exponential random graph models for social networks: Theory, methods, and applications, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511894701

Minhas, S., Hoff, P. D. & Ward, M. D. (2019), ‘Inferential approaches for network analysis: Amen for latent factor models’, Political Analysis 27(2), 208–222. DOI: https://doi.org/10.1017/pan.2018.50

Newman, M. (2010), Networks: An Introduction, Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199206650.003.0001

Newman, M. & Watts, D. J. (1999), ‘Scaling and percolation in the small-world network model’, Physical Review E 60(6), 7332. DOI: https://doi.org/10.1103/PhysRevE.60.7332

Nowicki, K. & Snijders, T. (2001), ‘Estimation and prediction for stochastic blockstructures’, Journal of the American Statistical Association 96(455), 1077–1087. DOI: https://doi.org/10.1198/016214501753208735

Paez, M. S., Amini, A. A. & Lin, L. (2019), ‘Hierarchical stochastic block model for community detection in multiplex networks’, arXiv preprint arXiv:1904.05330 .

Polson, N. G., Scott, J. G. & Windle, J. (2013), ‘Bayesian inference for logistic models using Pólya-Gamma latent variables’, Journal of the American Statistical Association 108(504), 1339–1349. DOI: https://doi.org/10.1080/01621459.2013.829001

How to Cite

APA

Sosa, J. and Buitrago, L. (2021). A Review of Latent Space Models for Social Networks. Revista Colombiana de Estadística, 44(1), 171–200. https://doi.org/10.15446/rce.v44n1.89369

ACM

[1]
Sosa, J. and Buitrago, L. 2021. A Review of Latent Space Models for Social Networks. Revista Colombiana de Estadística. 44, 1 (Jan. 2021), 171–200. DOI:https://doi.org/10.15446/rce.v44n1.89369.

ACS

(1)
Sosa, J.; Buitrago, L. A Review of Latent Space Models for Social Networks. Rev. colomb. estad. 2021, 44, 171-200.

ABNT

SOSA, J.; BUITRAGO, L. A Review of Latent Space Models for Social Networks. Revista Colombiana de Estadística, [S. l.], v. 44, n. 1, p. 171–200, 2021. DOI: 10.15446/rce.v44n1.89369. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/89369. Acesso em: 28 mar. 2025.

Chicago

Sosa, Juan, and Lina Buitrago. 2021. “A Review of Latent Space Models for Social Networks”. Revista Colombiana De Estadística 44 (1):171-200. https://doi.org/10.15446/rce.v44n1.89369.

Harvard

Sosa, J. and Buitrago, L. (2021) “A Review of Latent Space Models for Social Networks”, Revista Colombiana de Estadística, 44(1), pp. 171–200. doi: 10.15446/rce.v44n1.89369.

IEEE

[1]
J. Sosa and L. Buitrago, “A Review of Latent Space Models for Social Networks”, Rev. colomb. estad., vol. 44, no. 1, pp. 171–200, Jan. 2021.

MLA

Sosa, J., and L. Buitrago. “A Review of Latent Space Models for Social Networks”. Revista Colombiana de Estadística, vol. 44, no. 1, Jan. 2021, pp. 171-00, doi:10.15446/rce.v44n1.89369.

Turabian

Sosa, Juan, and Lina Buitrago. “A Review of Latent Space Models for Social Networks”. Revista Colombiana de Estadística 44, no. 1 (January 15, 2021): 171–200. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/89369.

Vancouver

1.
Sosa J, Buitrago L. A Review of Latent Space Models for Social Networks. Rev. colomb. estad. [Internet]. 2021 Jan. 15 [cited 2025 Mar. 28];44(1):171-200. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/89369

Download Citation

CrossRef Cited-by

CrossRef citations13

1. Nikolaos Nakis, Abdulkadir Çelikkanat, Sune Lehmann, Morten Mørup. (2024). A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations. IEEE Transactions on Knowledge and Data Engineering, 36(4), p.1399. https://doi.org/10.1109/TKDE.2023.3304344.

2. Wenli Zhang, Yuxin Liu, Chenhuizi Wang, Chao Zheng, Guoqiang Cui, Wei Guo. (2024). EasyDAM_V4: Guided-GAN-based cross-species data labeling for fruit detection with significant shape difference. Horticulture Research, 11(3) https://doi.org/10.1093/hr/uhae007.

3. Andreas Schmitz, Christian Schmidt-Wellenburg, Jonas Volle. (2025). Integrating geometric data analysis and network analysis by iterative reciprocal mapping. The example of the German field of sociology. Poetics, 108, p.101947. https://doi.org/10.1016/j.poetic.2024.101947.

4. Yi Chen, Jingru Zhang, Yi Yang, Young‐Sun Lee. (2022). Latent Space Model for Process Data. Journal of Educational Measurement, 59(4), p.517. https://doi.org/10.1111/jedm.12337.

5. Juan Sosa, Brenda Betancourt. (2022). A latent space model for multilayer network data. Computational Statistics & Data Analysis, 169, p.107432. https://doi.org/10.1016/j.csda.2022.107432.

6. Juan Sosa, Abel Rodríguez. (2024). A Bayesian approach for de-duplication in the presence of relational data. Journal of Applied Statistics, 51(2), p.197. https://doi.org/10.1080/02664763.2022.2118678.

7. Selena Wang, Yiting Wang, Frederick H. Xu, Li Shen, Yize Zhao. (2025). Establishing group-level brain structural connectivity incorporating anatomical knowledge under latent space modeling. Medical Image Analysis, 99, p.103309. https://doi.org/10.1016/j.media.2024.103309.

8. Carolina Luque, Juan Sosa. (2023). A Bayesian spatial voting model to characterize the legislative behavior of the Colombian Senate 2010–2014. Journal of Applied Statistics, 50(16), p.3362. https://doi.org/10.1080/02664763.2022.2111678.

9. Zhumengmeng Jin, Juan Sosa, Shangchen Song, Brenda Betancourt. (2024). A robust Bayesian latent position approach for community detection in networks with continuous attributes. Journal of Applied Statistics, , p.1. https://doi.org/10.1080/02664763.2024.2431736.

10. Yan Zhang, Rui Pan, Xuening Zhu, Kuangnan Fang, Hansheng Wang. (2024). A Latent Space Model for Weighted Keyword Co-Occurrence Networks with Applications in Knowledge Discovery in Statistics. Journal of Computational and Graphical Statistics, , p.1. https://doi.org/10.1080/10618600.2024.2407465.

11. Juan Sosa, Brenda Betancourt. (2023). Bayesian inference of financial networks. Model Assisted Statistics and Applications, 18(4), p.295. https://doi.org/10.3233/MAS-231456.

12. Selena Wang, Yiting Wang, Frederick H. Xu, Xinyuan Tian, Carolyn A. Fredericks, Li Shen, Yize Zhao. (2024). Sex‐specific topological structure associated with dementia via latent space estimation. Alzheimer's & Dementia, 20(12), p.8387. https://doi.org/10.1002/alz.14266.

13. Guanghui Wang, Yushan Wang, Kaidi Liu, Shu Sun. (2024). A classification and recognition algorithm of key figures in public opinion integrating multidimensional similarity and K-shell based on supernetwork. Humanities and Social Sciences Communications, 11(1) https://doi.org/10.1057/s41599-024-02711-4.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 4
  • Scopus - Citation Indexes: 13
  • Usage
  • SciELO - Full Text Views: 415
  • SciELO - Abstract Views: 12
  • Captures
  • Mendeley - Readers: 29
  • Social Media
  • Facebook - Shares, Likes & Comments: 4

Article abstract page views

603

Downloads