Published

2023-01-01

Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution

Distribuciones previas objetivas para estimar los parámetros de la distribución Poisson-Exponencial

DOI:

https://doi.org/10.15446/rce.v46n1.95989

Keywords:

Bayesian, Poisson-Exponential, Jeffreys, MDIP, Objective, Prior (en)
Bayesiano, Jeffreys, MDIP, Objetiva, Poisson-Exponencial, Priori (es)

Downloads

Authors

  • Fernando A. Moala Sao Paulo State University
  • Gustavo Moraes State University of Sao Paulo

In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution PE. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the PE distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.

En este artículo, se examina un conjunto de importantes priori objetivas para la estimación bayesiana de los parámetros de la distribución Poisson-Exponencial (PE). Derivamos la priori Jeffreys multivariada y la Maximal Data Information Prior. También se analizan la priori de Referencia y otras prioris propuestas en la literatura. Mostramos que las distribuciones posterioris resultantes de estos enfoques son adecuadas, aunque las respectivas prioris son impropias. Las simulaciones de Monte Carlo se utilizan para comparar las eficiencias, para evaluar la sensibilidad de la elección de las prioris, principalmente para tamaños de muestra pequeños. Este estudio de simulación muestra que los errores cuadráticos medios, el sesgo medio y la probabilidad de cobertura de los intervalos creíbles bajo la Gamma, regla de Jeffreys y Box & Tiao mostraron resultados iguales, mientras que los prioris de Jeffreys y Reference mostraron los mejores resultados. El priori MDIP tuvo un peor desempeño en todas las situaciones analizadas mostrando no estar indicado para el análisis bayesiano de la distribución PE. Se analiza un conjunto de datos reales con fines ilustrativos de los enfoques bayesianos.

References

Belaghi, R., Asl, M., Alma, O., Singh, S. & Vasfi, M. (2019), Estimation and prediction for the poisson-exponential distribution based on type-ii censored data', American Journal of Mathematical and Management Sciences 38(1), 96-115. DOI: https://doi.org/10.1080/01966324.2018.1484827

Berger, J. O. & Bernardo, J. M. (1992), On the development of the reference prior method', Bayesian Statistics 4(4), 35-60. DOI: https://doi.org/10.1093/oso/9780198522669.003.0003

Bernardo, J. M. (1979), Reference posterior distributions for bayesian inference', Journal Royal Statistical Society 41(2), 113-147. DOI: https://doi.org/10.1111/j.2517-6161.1979.tb01066.x

Box, G. E. P. & Tiao, G. C. (1973), Bayesian inference in statistical analysis.

Cancho, V. G., Louzada-Neto, F. & Barriga, G. D. C. (2011), The poisson-exponential lifetime distribution', Computational Statistics and Data Analysis 55, 677-686. DOI: https://doi.org/10.1016/j.csda.2010.05.033

Jeffreys, S. H. (1967), Theory of probability, number 3, London, Oxford U. Press.

Lawless, J. F. (2003), Statistical Models and Methods for Lifetime Data, Vol. 2 edition, Wiley, New York. DOI: https://doi.org/10.1002/9781118033005

Louzada-Neto, F., Cancho, V. G. & Barriga, G. D. C. (2011), The poisson-exponential distribution: a bayesian approach', Journal of Applied Statistics 38(6), 1239-1248. DOI: https://doi.org/10.1080/02664763.2010.491862

Rodrigues, G., Louzada, F. & Ramos, P. (2018), Poisson-exponential distribution: different methods of estimation', Journal of Applied Statistics 45(1), 128-144. DOI: https://doi.org/10.1080/02664763.2016.1268571

Singh, S., Singh, U. & Kumar, M. (2014), Estimation for the parameter of poisson-exponential distribution under bayesian paradigm', Journal of Data Science 12, 157-173. DOI: https://doi.org/10.6339/JDS.201401_12(1).0009

Tibshirani, R. (1987), Noninformative priors for one parameters of many', Biometrika 76, 604-608. DOI: https://doi.org/10.1093/biomet/76.3.604

Tomazella, V. L. D., Cancho, V. G. & Louzada-Neto, F. (2013), Bayesian reference analysis for the poisson-exponential lifetime distribution', Chilean Journal of Statistics 4(1), 99-113.

Zellner, A. (1977), Maximal data information prior distributions, in A. Aykac & C. Brumat, eds, New methods in the applications of bayesian methods', North-Holland, Amsterdam.

Zellner, A. (1984), Maximal data information prior distributions', Basic Issues in Econometrics.

Zellner, A. (1990), Bayesian methods and entropy in economics and econometrics, in J. W. T. Grandy & L. H. Schick, eds, Maximum Entropy and Bayesian Methods', Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 17-31. DOI: https://doi.org/10.1007/978-94-011-3460-6_2

Zellner, A. (1996), Models, prior information and bayesian analysis', Journal of Econometrics 75(1), 51-68. DOI: https://doi.org/10.1016/0304-4076(95)01768-2

Zellner, A. & Min, C.-K. (1992), Bayesian analysis, model selection and prediction, University of Chicago, Graduate School of Business, Department of Economics. DOI: https://doi.org/10.1017/CBO9780511524448.019

How to Cite

APA

Moala, F. A. and Moraes, G. . (2023). Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution. Revista Colombiana de Estadística, 46(1), 93–110. https://doi.org/10.15446/rce.v46n1.95989

ACM

[1]
Moala, F.A. and Moraes, G. 2023. Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution. Revista Colombiana de Estadística. 46, 1 (Jan. 2023), 93–110. DOI:https://doi.org/10.15446/rce.v46n1.95989.

ACS

(1)
Moala, F. A.; Moraes, G. . Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution. Rev. colomb. estad. 2023, 46, 93-110.

ABNT

MOALA, F. A.; MORAES, G. . Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution. Revista Colombiana de Estadística, [S. l.], v. 46, n. 1, p. 93–110, 2023. DOI: 10.15446/rce.v46n1.95989. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/95989. Acesso em: 28 mar. 2025.

Chicago

Moala, Fernando A., and Gustavo Moraes. 2023. “Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution”. Revista Colombiana De Estadística 46 (1):93-110. https://doi.org/10.15446/rce.v46n1.95989.

Harvard

Moala, F. A. and Moraes, G. . (2023) “Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution”, Revista Colombiana de Estadística, 46(1), pp. 93–110. doi: 10.15446/rce.v46n1.95989.

IEEE

[1]
F. A. Moala and G. . Moraes, “Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution”, Rev. colomb. estad., vol. 46, no. 1, pp. 93–110, Jan. 2023.

MLA

Moala, F. A., and G. . Moraes. “Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution”. Revista Colombiana de Estadística, vol. 46, no. 1, Jan. 2023, pp. 93-110, doi:10.15446/rce.v46n1.95989.

Turabian

Moala, Fernando A., and Gustavo Moraes. “Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution”. Revista Colombiana de Estadística 46, no. 1 (January 18, 2023): 93–110. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/95989.

Vancouver

1.
Moala FA, Moraes G. Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution. Rev. colomb. estad. [Internet]. 2023 Jan. 18 [cited 2025 Mar. 28];46(1):93-110. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/95989

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Hassan S. Bakouch, Fernando A. Moala, Shuhrah Alghamdi, Olayan Albalawi. (2024). Bayesian Methods for Step-Stress Accelerated Test under Gamma Distribution with a Useful Reparametrization and an Industrial Data Application. Mathematics, 12(17), p.2747. https://doi.org/10.3390/math12172747.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 2
  • Captures
  • Mendeley - Readers: 4

Article abstract page views

207

Downloads