Published
Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution
Distribuciones previas objetivas para estimar los parámetros de la distribución Poisson-Exponencial
DOI:
https://doi.org/10.15446/rce.v46n1.95989Keywords:
Bayesian, Poisson-Exponential, Jeffreys, MDIP, Objective, Prior (en)Bayesiano, Jeffreys, MDIP, Objetiva, Poisson-Exponencial, Priori (es)
Downloads
In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution PE. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the PE distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.
En este artículo, se examina un conjunto de importantes priori objetivas para la estimación bayesiana de los parámetros de la distribución Poisson-Exponencial (PE). Derivamos la priori Jeffreys multivariada y la Maximal Data Information Prior. También se analizan la priori de Referencia y otras prioris propuestas en la literatura. Mostramos que las distribuciones posterioris resultantes de estos enfoques son adecuadas, aunque las respectivas prioris son impropias. Las simulaciones de Monte Carlo se utilizan para comparar las eficiencias, para evaluar la sensibilidad de la elección de las prioris, principalmente para tamaños de muestra pequeños. Este estudio de simulación muestra que los errores cuadráticos medios, el sesgo medio y la probabilidad de cobertura de los intervalos creíbles bajo la Gamma, regla de Jeffreys y Box & Tiao mostraron resultados iguales, mientras que los prioris de Jeffreys y Reference mostraron los mejores resultados. El priori MDIP tuvo un peor desempeño en todas las situaciones analizadas mostrando no estar indicado para el análisis bayesiano de la distribución PE. Se analiza un conjunto de datos reales con fines ilustrativos de los enfoques bayesianos.
References
Belaghi, R., Asl, M., Alma, O., Singh, S. & Vasfi, M. (2019), Estimation and prediction for the poisson-exponential distribution based on type-ii censored data', American Journal of Mathematical and Management Sciences 38(1), 96-115. DOI: https://doi.org/10.1080/01966324.2018.1484827
Berger, J. O. & Bernardo, J. M. (1992), On the development of the reference prior method', Bayesian Statistics 4(4), 35-60. DOI: https://doi.org/10.1093/oso/9780198522669.003.0003
Bernardo, J. M. (1979), Reference posterior distributions for bayesian inference', Journal Royal Statistical Society 41(2), 113-147. DOI: https://doi.org/10.1111/j.2517-6161.1979.tb01066.x
Box, G. E. P. & Tiao, G. C. (1973), Bayesian inference in statistical analysis.
Cancho, V. G., Louzada-Neto, F. & Barriga, G. D. C. (2011), The poisson-exponential lifetime distribution', Computational Statistics and Data Analysis 55, 677-686. DOI: https://doi.org/10.1016/j.csda.2010.05.033
Jeffreys, S. H. (1967), Theory of probability, number 3, London, Oxford U. Press.
Lawless, J. F. (2003), Statistical Models and Methods for Lifetime Data, Vol. 2 edition, Wiley, New York. DOI: https://doi.org/10.1002/9781118033005
Louzada-Neto, F., Cancho, V. G. & Barriga, G. D. C. (2011), The poisson-exponential distribution: a bayesian approach', Journal of Applied Statistics 38(6), 1239-1248. DOI: https://doi.org/10.1080/02664763.2010.491862
Rodrigues, G., Louzada, F. & Ramos, P. (2018), Poisson-exponential distribution: different methods of estimation', Journal of Applied Statistics 45(1), 128-144. DOI: https://doi.org/10.1080/02664763.2016.1268571
Singh, S., Singh, U. & Kumar, M. (2014), Estimation for the parameter of poisson-exponential distribution under bayesian paradigm', Journal of Data Science 12, 157-173. DOI: https://doi.org/10.6339/JDS.201401_12(1).0009
Tibshirani, R. (1987), Noninformative priors for one parameters of many', Biometrika 76, 604-608. DOI: https://doi.org/10.1093/biomet/76.3.604
Tomazella, V. L. D., Cancho, V. G. & Louzada-Neto, F. (2013), Bayesian reference analysis for the poisson-exponential lifetime distribution', Chilean Journal of Statistics 4(1), 99-113.
Zellner, A. (1977), Maximal data information prior distributions, in A. Aykac & C. Brumat, eds, New methods in the applications of bayesian methods', North-Holland, Amsterdam.
Zellner, A. (1984), Maximal data information prior distributions', Basic Issues in Econometrics.
Zellner, A. (1990), Bayesian methods and entropy in economics and econometrics, in J. W. T. Grandy & L. H. Schick, eds, Maximum Entropy and Bayesian Methods', Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 17-31. DOI: https://doi.org/10.1007/978-94-011-3460-6_2
Zellner, A. (1996), Models, prior information and bayesian analysis', Journal of Econometrics 75(1), 51-68. DOI: https://doi.org/10.1016/0304-4076(95)01768-2
Zellner, A. & Min, C.-K. (1992), Bayesian analysis, model selection and prediction, University of Chicago, Graduate School of Business, Department of Economics. DOI: https://doi.org/10.1017/CBO9780511524448.019
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Hassan S. Bakouch, Fernando A. Moala, Shuhrah Alghamdi, Olayan Albalawi. (2024). Bayesian Methods for Step-Stress Accelerated Test under Gamma Distribution with a Useful Reparametrization and an Industrial Data Application. Mathematics, 12(17), p.2747. https://doi.org/10.3390/math12172747.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).