Published
Some Developments in Bayesian Hierarchical Linear Regression Modeling
Algunos desarrollos en modelos de regresión lineal jerárquicos bayesianos
DOI:
https://doi.org/10.15446/rce.v45n2.98988Keywords:
Bayesian Inference, Clustering, Gibbs Sampling, Hierarchical Model, Linear Regression (en)Agrupamiento, Inferencia bayesiana, Muestreador de Gibb, Modelo jerárquico, Regresión lineal (es)
Downloads
Considering the flexibility and applicability of Bayesian modeling, in this work we revise the main characteristics of two hierarchical models in a regression setting. We study the full probabilistic structure of the models along with the full conditional distribution for each model parameter. Under our hierarchical extensions, we allow the mean of the second stage of the model to have a linear dependency on a set of covariates. The Gibbs sampling algorithms used to obtain samples when fitting the models are fully described and derived. In addition, we consider a case study in which the plant size is characterized as a function of nitrogen soil concentration and a grouping factor (farm).
Considerando la exibilidad y aplicabilidad del modelamiento Bayesiano, en este trabajo se revisan las principales características de dos modelos jerárquicos en un escenario de regresión. Se estudia la estructura probabilística completa de los modelos junto con la distribución condicional completa para cada parámetro del modelo. Las extensiones jerárquicas que se presentan permiten que la media de la segunda etapa del modelo tenga una dependencia lineal de un conjunto de covariables. Se describen y derivan completamente los algoritmos de muestreo de Gibbs para ajustar los modelos. Además, se considera un caso de estudio en el que se caracteriza el tamaño de plantas en función de la concentración de nitrógeno en el suelo y un factor de agrupación (fincas).
References
Albert, J. (2009), Bayesian Computation with R, Use R!, Springer. DOI: https://doi.org/10.1007/978-0-387-92298-0
Christensen, R., Johnson, W., Branscum, A. & Hanson, T. (2011), Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians, Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis. http://books.google.com/books?id=qPERhCbePNcC
Ferguson, T. (1973), 'A bayesian analysis of some nonparametric problems', The annals of statistics pp. 209-230. DOI: https://doi.org/10.1214/aos/1176342360
Gamerman, D. & Lopes, H. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, CRC Press. DOI: https://doi.org/10.1201/9781482296426
Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. & Rubin, D. (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis. DOI: https://doi.org/10.1201/b16018
Gelman, A., Hwang, J. & Vehtari, A. (2014), 'Understanding predictive information criteria for bayesian models', Statistics and computing 24(6), 997-1016. DOI: https://doi.org/10.1007/s11222-013-9416-2
Hoff P. (2009), A First Course in Bayesian Statistical Methods, Springer Texts in Statistics, Springer. DOI: https://doi.org/10.1007/978-0-387-92407-6
Ishwaran, H. & Zarepour, M. (2000), 'Markov chain monte carlo in approximate dirichlet and beta two-parameter process hierarchical models', Biometrika 87(2), 371-390. DOI: https://doi.org/10.1093/biomet/87.2.371
Kass, R. & Wasserman, L. (1995), 'A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion', Journal of the american statistical association, 90(431), 928-934. DOI: https://doi.org/10.1080/01621459.1995.10476592
Lau, J. & Green, P. (2007), 'Bayesian model-based clustering procedures', Journal of Computational and Graphical Statistics 16(3), 526-558. DOI: https://doi.org/10.1198/106186007X238855
Müller, P., Quintana, F. A., Jara, A. & Hanson, T. (2015), Bayesian nonparametric data analysis, Springer. DOI: https://doi.org/10.1007/978-3-319-18968-0
Pitman, J. & Yor, M. (1997), 'The two-parameter poisson-dirichlet distribution derived from a stable subordinator', The Annals of Probability pp. 855-900. DOI: https://doi.org/10.1214/aop/1024404422
Sethuraman, J. (1994), 'A constructive definition of dirichlet priors', Statistica sinica pp. 639-650.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. (2014), 'The deviance information criterion: 12 years on', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76(3), 485-493. DOI: https://doi.org/10.1111/rssb.12062
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. (2002), 'Bayesian measures of model complexity and fit', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583-639. DOI: https://doi.org/10.1111/1467-9868.00353
Stephens, M. (2000), 'Dealing with label switching in mixture models', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62(4), 795-809. DOI: https://doi.org/10.1111/1467-9868.00265
Watanabe, S. (2010), 'Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory', Journal of Machine Learning Research 11(Dec), 3571-3594.
Watanabe, S. (2013), 'A widely applicable Bayesian information criterion', Journal of Machine Learning Research 14(Mar), 867-897.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Malin Svärd, Gustav Markkula, Mikael Ljung Aust, Jonas Bärgman. (2024). Using naturalistic and driving simulator data to model driver responses to unintentional lane departures. Transportation Research Part F: Traffic Psychology and Behaviour, 100, p.361. https://doi.org/10.1016/j.trf.2023.11.021.
2. Ameera Jaber Mohaisen, Abdul-Hussein Saber AL-Mouel, Saja Yaseen Abdulsamad, N. Aldahan, A.J. Ramadhan. (2024). A note on conjugate Bayesian estimators of random effects model. BIO Web of Conferences, 97, p.00147. https://doi.org/10.1051/bioconf/20249700147.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).