Published

2014-07-01

The Graphical Representation of Inequality

La representación gráfica de la desigualdad

DOI:

https://doi.org/10.15446/rce.v37n2spe.47947

Keywords:

Bonferroni Curve, Inequality Index, Income Distribution, Lorenz Curve, Zenga Inequality Curve (en)
Curva de Bonferroni, Curva de Lorenz, Curva de Zenga, Distribución del ingreso, índice de desigualdad (es)

Downloads

Authors

  • Alberto Arcagni Università degli Studi di Milano-Bicocca
  • Francesco Porro Università degli Studi di Milano-Bicocca

As of the past century, the analysis and the graphical representation of inequality play a very important role in economics. In the literature, several curves have been proposed and developed to simplify the description of inequality. The aim of this paper is a review and a comparison of the most known inequality curves, evaluating the features of each, with a particular focus on interpretation.

Desde el siglo pasado el análisis y representación gráfica de la desigualdad juega un papel importante en la economía. En la literatura varias curvas han sido propuestas y desarrolladas para simplificar la descripción de la desigualdad. El objetivo de este artículo es revisar y comparar las curvas de la desigualdad más conocidas evaluando sus características y enfocándose en su interpretación.

https://doi.org/10.15446/rce.v37n2spe.47947

The Graphical Representation of Inequality

La representación gráfica de la desigualdad

ALBERTO ARCAGNI1, FRANCESCO PORRO2

1Università degli Studi di Milano-Bicocca, Dipartimento di Statistica e Metodi Quantitativi, Italy. Professor. Email: alberto.arcagni@unimib.it
2Università degli Studi di Milano-Bicocca, Dipartimento di Statistica e Metodi Quantitativi, Italy. Professor. Email: francesco.porro1@unimib.it


Abstract

As of the past century, the analysis and the graphical representation of inequality play a very important role in economics. In the literature, several curves have been proposed and developed to simplify the description of inequality. The aim of this paper is a review and a comparison of the most known inequality curves, evaluating the features of each, with a particular focus on interpretation.

Key words: Bonferroni Curve, Inequality Index, Income Distribution, Lorenz Curve, Zenga Inequality Curve.


Resumen

Desde el siglo pasado el análisis y representación gráfica de la desigualdad juega un papel importante en la economía. En la literatura varias curvas han sido propuestas y desarrolladas para simplificar la descripción de la desigualdad. El objetivo de este artículo es revisar y comparar las curvas de la desigualdad más conocidas evaluando sus características y enfocándose en su interpretación.

Palabras clave: curva de Bonferroni, curva de Lorenz, curva de Zenga, distribución del ingreso, índice de desigualdad.


Texto completo disponible en PDF


References

1. Arcagni, A. & Porro, F. (2013), 'On the parameters of Zenga distribution', Statistical Methods & Applications 22(3), 285-303.

2. Arcagni, A. & Zenga, M. (2013), 'Application of Zenga's distribution to a panel survey on household incomes of European Member States', Statistica & Applicazioni 11(1), 79-102.

3. Bank of Italy, (2012), 'Indagine sui bilanci delle famiglie italiane'. *http://www.bancaditalia.it/statistiche/storiche

4. Bonferroni, C.E. (1930), Elementi di Statistica Generale, Seeber, Firenze.

5. Dagum, C. (1977), A New Model of Personal Income Distribution : Specification and Estimation, Cahier de recherche, University of Ottawa, Faculty of Social Sciences, Department of Economics. *http://books.google.com.co/books?id9eckNAEACAAJ

6. De Vergottini, M. (1940), 'Sul significato di alcuni indici di concentrazione', Annali di Economia Nuova Serie 2(5/6), 317-347.

7. Gastwirth, J. (1972), 'The estimation of the Lorenz curve and Gini index', The Review of Economics and Statistics 54(3), 306-316.

8. Gini, C. (1914), 'Sulla misura della concentrazione e della variabilità dei caratteri', Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 73, 1203-1248.

9. Giorgi, G. & Crescenzi, M. (2001), 'A look at Bonferroni inequality measure in a reliability framework', Statistica 41, 571-583.

10. Greselin, F. & Pasquazzi, L. (2009), 'Asymptotic confidence intervals for a new inequality measure', Communications in Statistics-Simulation and Computation 38(8), 1742-1756.

11. Greselin, F., Pasquazzi, L. & Zitikis, Ri\vcardas (2013), 'Contrasting the Gini and Zenga indices of economic inequality', Journal of Applied Statistics 40(2), 282-297.

12. Langel, M. & Tillé, Y. (2012), 'Inference by linearization for Zenga's new inequality index: A comparison with the Gini index', Metrika 75(8), 1093-1110.

13. Lorenz, M. (1905), 'Methods of measuring the concentration of wealth', Publications of the American Statistical Association 9(70), 209-219.

14. Pietra, G. (1915), 'Delle relazioni fra indici di variabilità note I e II', Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 74(2), 775-804.

15. Polisicchio, M. (2008), 'The continuous random variable with uniform point inequality measure I(p)', Statistica & Applicazioni 6(2), 137-151.

16. Polisicchio, M. & Porro, F. (2011), 'A comparison between Lorenz L(p) curve and Zenga I(p) curve', Statistica Applicata 21(3-4), 289-301.

17. Porro, F. (2008), Equivalence between partial order based on curve L(p) and partial order based on curve I(p), 'Proceedings of SIS 2008', Padova.

18. Pundir, S., Arora, S. & Jain, K. (2005), 'Bonferroni curve and the related statistical inference', Statistics & Probability Letters 75(2), 140-150.

19. R Core Team, (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *http://www.R-project.org/

20. Radaelli, P. (2010), 'On the decomposition by subgroups of the Gini index and Zenga's uniformity and inequality indexes', International Statistical Review 78(1), 81-101.

21. Tarsitano, A. (1990), The Bonferroni index of income inequality, 'Income and Wealth Distribution, Inequality and Poverty', C. Dagum and M. Zenga, Berlin, p. 228-242.

22. Zenga, M.M. (1984), 'Tendenza alla massima ed alla minima concentrazione per variabili casuali continue', Statistica 44(4), 619-640.

23. Zenga, M. (2007), 'Inequality curve and inequality index based on the ratios between lower and upper arithmetic means', Statistica & Applicazioni 5(1), 3-27.

24. Zenga, M. (2010), 'Mixture of Polisicchio's truncated Pareto distributions with beta weights', Statistica & Applicazioni {8}(1), 3-25.

25. Zenga, M. (2013), 'Decomposition by sources of the Gini, Bonferroni and Zenga inequality indexes', Statistica & Applicazioni 11(2), 133-161.


[Recibido en mayo de 2014. Aceptado en septiembre de 2014]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv37n2a09,
    AUTHOR  = {Arcagni, Alberto and Porro, Francesco},
    TITLE   = {{The Graphical Representation of Inequality}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2014},
    volume  = {37},
    number  = {2},
    pages   = {419-437}
}

References

Arcagni, A. & Porro, F. (2013), ‘On the parameters of Zenga distribution’, Statistical Methods & Applications 22(3), 285–303.

Arcagni, A. & Zenga, M. (2013), ‘Application of Zenga’s distribution to a panel survey on household incomes of European Member States’, Statistica & Applicazioni 11(1), 79–102.

Bank of Italy (2012), ‘Indagine sui bilanci delle famiglie italiane’. *http://www.bancaditalia.it/statistiche/storiche

Bonferroni, C. (1930), Elementi di Statistica Generale, Seeber, Firenze.

Dagum, C. (1977), A New Model of Personal Income Distribution : Specification and Estimation, Cahier de recherche, University of Ottawa, Faculty of Social Sciences, Department of Economics.

*http://books.google.com.co/books?id=9eckNAEACAAJ

De Vergottini, M. (1940), ‘Sul significato di alcuni indici di concentrazione’, Annali di Economia Nuova Serie 2(5/6), 317–347.

Gastwirth, J. (1972), ‘The estimation of the Lorenz curve and Gini index’, The Review of Economics and Statistics 54(3), 306–316.

Gini, C. (1914), ‘Sulla misura della concentrazione e della variabilità dei caratteri’, Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 73, 1203–1248.

Giorgi, G. & Crescenzi, M. (2001), ‘A look at Bonferroni inequality measure in a reliability framework’, Statistica 41, 571–583.

Greselin, F. & Pasquazzi, L. (2009), ‘Asymptotic confidence intervals for a new inequality measure’, Communications in Statistics-Simulation and Computation 38(8), 1742–1756.

Greselin, F., Pasquazzi, L. & Zitikis, R. (2013), ‘Contrasting the Gini and Zenga indices of economic inequality’, Journal of Applied Statistics 40(2), 282–297.

Langel, M. & Tillé, Y. (2012), ‘Inference by linearization for Zenga’s new inequality index: A comparison with the Gini index’, Metrika 75(8), 1093–1110.

Lorenz, M. (1905), ‘Methods of measuring the concentration of wealth’, Publications of the American Statistical Association 9(70), 209–219.

Pietra, G. (1915), ‘Delle relazioni fra indici di variabilità note I e II’, Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 74(2), 775–804.

Polisicchio, M. (2008), ‘The continuous random variable with uniform point inequality measure I(p)’, Statistica & Applicazioni 6(2), 137–151.

Polisicchio, M. & Porro, F. (2011), ‘A comparison between Lorenz L(p) curve and Zenga I(p) curve’, Statistica Applicata 21(3-4), 289–301.

Porro, F. (2008), Equivalence between partial order based on curve L(p) and partial order based on curve I(p), in ‘Proceedings of SIS 2008’, Padova.

Pundir, S., Arora, S. & Jain, K. (2005), ‘Bonferroni curve and the related statistical inference’, Statistics & Probability Letters 75(2), 140–150.

R Core Team (2013), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

*http://www.R-project.org/

Radaelli, P. (2010), ‘On the decomposition by subgroups of the Gini index and Zenga’s uniformity and inequality indexes’, International Statistical Review 78(1), 81–101.

Tarsitano, A. (1990), The Bonferroni index of income inequality, in ‘Income and Wealth Distribution, Inequality and Poverty’, C. Dagum and M. Zenga, Berlin, pp. 228–242.

Zenga, M. (1984), ‘Tendenza alla massima ed alla minima concentrazione per variabili casuali continue’, Statistica 44(4), 619–640.

Zenga, M. (2007), ‘Inequality curve and inequality index based on the ratios between lower and upper arithmetic means’, Statistica & Applicazioni 5(1), 3– 27.

Zenga, M. (2010), ‘Mixture of Polisicchio’s truncated Pareto distributions with beta weights’, Statistica & Applicazioni 8(1), 3–25.

Zenga, M. (2013), ‘Decomposition by sources of the Gini, Bonferroni and Zenga inequality indexes’, Statistica & Applicazioni 11(2), 133–161.

How to Cite

APA

Arcagni, A. and Porro, F. (2014). The Graphical Representation of Inequality. Revista Colombiana de Estadística, 37(2Spe), 419–436. https://doi.org/10.15446/rce.v37n2spe.47947

ACM

[1]
Arcagni, A. and Porro, F. 2014. The Graphical Representation of Inequality. Revista Colombiana de Estadística. 37, 2Spe (Jul. 2014), 419–436. DOI:https://doi.org/10.15446/rce.v37n2spe.47947.

ACS

(1)
Arcagni, A.; Porro, F. The Graphical Representation of Inequality. Rev. colomb. estad. 2014, 37, 419-436.

ABNT

ARCAGNI, A.; PORRO, F. The Graphical Representation of Inequality. Revista Colombiana de Estadística, [S. l.], v. 37, n. 2Spe, p. 419–436, 2014. DOI: 10.15446/rce.v37n2spe.47947. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/47947. Acesso em: 22 jan. 2025.

Chicago

Arcagni, Alberto, and Francesco Porro. 2014. “The Graphical Representation of Inequality”. Revista Colombiana De Estadística 37 (2Spe):419-36. https://doi.org/10.15446/rce.v37n2spe.47947.

Harvard

Arcagni, A. and Porro, F. (2014) “The Graphical Representation of Inequality”, Revista Colombiana de Estadística, 37(2Spe), pp. 419–436. doi: 10.15446/rce.v37n2spe.47947.

IEEE

[1]
A. Arcagni and F. Porro, “The Graphical Representation of Inequality”, Rev. colomb. estad., vol. 37, no. 2Spe, pp. 419–436, Jul. 2014.

MLA

Arcagni, A., and F. Porro. “The Graphical Representation of Inequality”. Revista Colombiana de Estadística, vol. 37, no. 2Spe, July 2014, pp. 419-36, doi:10.15446/rce.v37n2spe.47947.

Turabian

Arcagni, Alberto, and Francesco Porro. “The Graphical Representation of Inequality”. Revista Colombiana de Estadística 37, no. 2Spe (July 1, 2014): 419–436. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/47947.

Vancouver

1.
Arcagni A, Porro F. The Graphical Representation of Inequality. Rev. colomb. estad. [Internet]. 2014 Jul. 1 [cited 2025 Jan. 22];37(2Spe):419-36. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/47947

Download Citation

CrossRef Cited-by

CrossRef citations23

1. Kamila Trzcińska. (2024). Income Inequalities Between Women And Men In Selected European Countries. Folia Oeconomica Stetinensia, 24(2), p.327. https://doi.org/10.2478/foli-2024-0028.

2. Joseph L. Gastwirth. (2016). Measures of Economic Inequality Focusing on the Status of the Lower and Middle Income Groups. Statistics and Public Policy, 3(1), p.1. https://doi.org/10.1080/2330443X.2016.1213148.

3. Nada M. Alfaer, Ahmed M. Gemeay, Hassan M. Aljohani, Ahmed Z. Afify. (2021). The Extended Log-Logistic Distribution: Inference and Actuarial Applications. Mathematics, 9(12), p.1386. https://doi.org/10.3390/math9121386.

4. Marta Malecka. (2022). Asymptotic properties of duration-based VaR backtests. Statistics & Risk Modeling, 39(3-4), p.49. https://doi.org/10.1515/strm-2021-0019.

5. Sirinapa Aryuyuen, Winai Bodhisuwan. (2020). The Type II Topp Leone-Power Lomax Distribution with Analysis in Lifetime Data. Journal of Statistical Theory and Practice, 14(2) https://doi.org/10.1007/s42519-020-00091-x.

6. Marco D’Errico, Stefano Battiston, Tuomas Peltonen, Martin Scheicher. (2018). How does risk flow in the credit default swap market?. Journal of Financial Stability, 35, p.53. https://doi.org/10.1016/j.jfs.2017.05.007.

7. M. El-Morshedy, Ziyad Ali Alhussain, Doaa Atta, Ehab M. Almetwally, M. S. Eliwa. (2020). Bivariate Burr X Generator of Distributions: Properties and Estimation Methods with Applications to Complete and Type-II Censored Samples. Mathematics, 8(2), p.264. https://doi.org/10.3390/math8020264.

8. Shahryar Mirzaei, Gholam Reza Mohtashami Borzadaran, Mohammad Amini. (2017). A comparative study of the Gini coefficient estimators based on the linearization and U-statistics Methods. Revista Colombiana de Estadística, 40(2), p.205. https://doi.org/10.15446/rce.v40n2.53399.

9. Shahryar Mirzaei, S. M. A. Jahanshahi. (2022). A New Goodness of Fit Measure Based on Income Inequality Curves. Journal of Modern Applied Statistical Methods, 19(1), p.2. https://doi.org/10.22237/jmasm/1619482080.

10. N. P. Akpan, O. R. Uwaeme. (2024). On the Statistical Properties of the Remkan Distribution. Earthline Journal of Mathematical Sciences, , p.333. https://doi.org/10.34198/ejms.14224.333347.

11. Joseph L. Gastwirth. (2016). Measures of Economic Inequality Focusing on the Status of the Lower and Middle Income Groups. SSRN Electronic Journal, https://doi.org/10.2139/ssrn.2787205.

12. Ahmed M. Gemeay, Waleed Hamoud Alharbi, Alaa R. El-Alosey, Mazyar Ghadiri Nejad. (2024). A new power G-family of distributions: Properties, estimation, and applications. PLOS ONE, 19(8), p.e0308094. https://doi.org/10.1371/journal.pone.0308094.

13. M. Z. Anis, I. E. Okorie, M. Ahsanullah. (2024). A Review of the Rayleigh Distribution: Properties, Estimation & Application to COVID-19 Data. Bulletin of the Malaysian Mathematical Sciences Society, 47(1) https://doi.org/10.1007/s40840-023-01605-z.

14. Héctor J. Gómez, Karol I. Santoro, Diego Ayma, Isaac E. Cortés, Diego I. Gallardo, Tiago M. Magalhães. (2024). A New Generalization of the Truncated Gumbel Distribution with Quantile Regression and Applications. Mathematics, 12(11), p.1762. https://doi.org/10.3390/math12111762.

15. Marco D'Errico, Stefano Battiston, Tuomas A. Peltonen, Martin Scheicher. (2017). How Does Risk Flow in the Credit Default Swap Market?. SSRN Electronic Journal , https://doi.org/10.2139/ssrn.2973115.

16. S. Mirzaei, G. R. Mohtashami Borzadaran, M. Amini, H. Jabbari. (2019). A new generalized Weibull distribution in income economic inequality curves. Communications in Statistics - Theory and Methods, 48(4), p.889. https://doi.org/10.1080/03610926.2017.1422754.

17. Sana S. BuHamra, Noriah M. Al-Kandari, Eslam Hussam, Ehab M. Almetwally, Ahmed M. Gemeay. (2024). A case study for Kuwait mortality during the consequent waves of COVID-19. Heliyon, 10(5), p.e26790. https://doi.org/10.1016/j.heliyon.2024.e26790.

18. Michele Zenga. (2016). On the decomposition by subpopulations of the point and synthetic Zenga (2007) inequality indexes. METRON, 74(3), p.375. https://doi.org/10.1007/s40300-016-0086-7.

19. Francesca Greselin, Simone Pellegrino, Achille Vernizzi. (2021). The Zenga Equality Curve: A New Approach to Measuring Tax Redistribution and Progressivity. Review of Income and Wealth, 67(4), p.950. https://doi.org/10.1111/roiw.12493.

20. Muqrin A. Almuqrin, Salemah A. Almutlak, Ahmed M. Gemeay, Ehab M. Almetwally, Kadir Karakaya, Nicholas Makumi, Eslam Hussam, Ramy Aldallal, Anoop Kumar. (2023). Weighted power Maxwell distribution: Statistical inference and COVID-19 applications. PLOS ONE, 18(1), p.e0278659. https://doi.org/10.1371/journal.pone.0278659.

21. Héctor J. Gómez, Diego I. Gallardo, Osvaldo Venegas. (2019). Generalized Truncation Positive Normal Distribution. Symmetry, 11(11), p.1361. https://doi.org/10.3390/sym11111361.

22. Karol I. Santoro, Yolanda M. Gómez, Darlin Soto, Inmaculada Barranco-Chamorro. (2024). Unit-Power Half-Normal Distribution Including Quantile Regression with Applications to Medical Data. Axioms, 13(9), p.599. https://doi.org/10.3390/axioms13090599.

23. Anis Syazwani Abd Raof, Mohd Azmi Haron, Muhammad Aslam Mohd Safari, Zailan Siri. (2024). Measuring the inequality of Malaysian top incomes using a new Pareto-type distribution in rural and urban regions. 4TH SYMPOSIUM ON INDUSTRIAL SCIENCE AND TECHNOLOGY (SISTEC2022). 4TH SYMPOSIUM ON INDUSTRIAL SCIENCE AND TECHNOLOGY (SISTEC2022). 3023, p.080001. https://doi.org/10.1063/5.0171951.

Dimensions

PlumX

Article abstract page views

393

Downloads

Download data is not yet available.