Published
Alpha-Skew Generalized t Distribution
Distribución t generalizada alfa sesgada
DOI:
https://doi.org/10.15446/rce.v38n2.51665Keywords:
Bimodality, Kurtosis, Maximum Likelihood Estimation, Modeling, Skewness (en)Bimodalidad, Curtosis, Estimación máximo verosímil, Modelamiento, Sesgo. (es)
The alpha-skew normal (ASN) distribution has been proposed recently in the literature by using standard normal distribution and a skewing approach. Although ASN distribution is able to model both skew and bimodal data, it is shortcoming when data has thinner or thicker tails than normal. Therefore, we propose an alpha-skew generalized t (ASGT) by using the generalized t (GT) distribution and a new skewing procedure. From this point of view, ASGT can be seen as an alternative skew version of GT distribution. However, ASGT differs from the previous skew versions of GT distribution since it is able to model bimodal data sest as well as it nests most commonly used density functions. In this paper, moments and maximum likelihood estimation of the parameters of ASGT distribution are given. Skewness and kurtosis measures are derived based on the first four noncentral moments. The cumulative distribution function (cdf) of ASGT distribution is also obtained. In the application part of the study, two real life problems taken from the literature are modeled by using ASGT distribution.
La distribución normal alfa-sesgada (ASN por sus siglas en inglés) ha sido propuesta recientemente en la literatura mediante el uso de una distribución normal estándar y procedimientos de sesgo. Aunque la distribución ASN es capaz de modelar tanto datos sesgados y bimodales, no es recomendada cuando los datos tienen colas más livianas o pesadas que la distribución normal. Por lo tanto, se propone una distribución t alfa-sesgada generalizada (ASGT por sus siglas en inglés) mediante el uso de la distribución t generalizada (GT por sus siglas en inglés) y un nuevo procedimiento de sesgo. Bajo este punto de vista, la distribución ASGT se puede ver como una alternativa sesgada de la distribución GT. Sin embargo, ASGT difiere de previas versiones sesgadas de la distribución GT puesto que es capaz de modelar datos bimodales y agrupa funciones de densidad más comúnmente usadas. En este artículo, los momentos y la estimación máximo verosímil de los parámetros de la distribución ASGT son derivadas. Medidas del sesgo y la curtosis son derivadas con base a los primeros cuatro momentos no centrales. La función de distribución acumulada (cdf por sus siglas en inglés) de la distribución ASGT es también obtenida. En la parte de aplicación del estudio, dos problemas reales tomados de la literatura son modelados usando la distribución ASGT.
https://doi.org/10.15446/rce.v38n2.51665
1Anadolu University, Faculty of Science, Department of Statistics, Eskisehir, Turkey. Professor. Email: sacitas@anadolu.edu.tr
2Ankara University, Faculty of Science, Department of Statistics, Ankara, Turkey. Professor. Email: senoglu@science.ankara.edu.tr
3Ankara University, Faculty of Science, Department of Statistics, Ankara, Turkey. Professor. Email: oarslan@ankara.edu.tr
The alpha-skew normal (ASN) distribution has been proposed recently in the literature by using standard normal distribution and a skewing approach. Although ASN distribution is able to model both skew and bimodal data, it is shortcoming when data has thinner or thicker tails than normal. Therefore, we propose an alpha-skew generalized t (ASGT) by using the generalized t (GT) distribution and a new skewing procedure. From this point of view, ASGT can be seen as an alternative skew version of GT distribution. However, ASGT differs from the previous skew versions of GT distribution since it is able to model bimodal data sest as well as it nests most commonly used density functions. In this paper, moments and maximum likelihood estimation of the parameters of ASGT distribution are given. Skewness and kurtosis measures are derived based on the first four noncentral moments. The cumulative distribution function (cdf) of ASGT distribution is also obtained. In the application part of the study, two real life problems taken from the literature are modeled by using ASGT distribution.
Key words: Bimodality, Kurtosis, Maximum Likelihood Estimation, Modeling, Skewness.
La distribución normal alfa-sesgada (ASN por sus siglas en inglés) ha sido propuesta recientemente en la literatura mediante el uso de una distribución normal estándar y procedimientos de sesgo. Aunque la distribución ASN es capaz de modelar tanto datos sesgados y bimodales, no es recomendada cuando los datos tienen colas más livianas o pesadas que la distribución normal. Por lo tanto, se propone una distribución t alfa-sesgada generalizada (ASGT por sus siglas en inglés) mediante el uso de la distribución t generalizada (GT por sus siglas en inglés) y un nuevo procedimiento de sesgo. Bajo este punto de vista, la distribución ASGT se puede ver como una alternativa sesgada de la distribución GT. Sin embargo, ASGT difiere de previas versiones sesgadas de la distribución GT puesto que es capaz de modelar datos bimodales y agrupa funciones de densidad más comúnmente usadas. En este artículo, los momentos y la estimación máximo verosímil de los parámetros de la distribución ASGT son derivadas. Medidas del sesgo y la curtosis son derivadas con base a los primeros cuatro momentos no centrales. La función de distribución acumulada (cdf por sus siglas en inglés) de la distribución ASGT es también obtenida. En la parte de aplicación del estudio, dos problemas reales tomados de la literatura son modelados usando la distribución ASGT.
Palabras clave: bimodalidad, curtosis, estimación máximo verosímil, \linebreak modelamiento, sesgo.
Texto completo disponible en PDF
References
1. Acitas, S., Senoglu, B. & Arslan, O. (2013), Alpha-skew generalized t distribution, International Conference Applied Statistics, Slovenia.
2. Arellano-Valle, R. B., Cortes, M. A. & Gomez, H. W. (2010), 'An extension of the epsilon-skew-normal distribution', Communications in Statistics - Theory and Methods 39, 912-922.
3. Arslan, O. (2004), 'Family of multivariate generalized t distributions', Journal of Multivariate Analysis 89, 329-337.
4. Arslan, O. & Genc, A. I. (2003), 'Robust location and scale estimation based on the univariate generalized t distribution', Communications in Statistics - Theory and Methods 32, 1505-1525.
5. Butler, R. J., McDonald, J. B., Nelson, R. D. & White, S. (1990), 'Robust and partially adaptive estimation of regression models', The Review of Economics and Statistics 72, 321-327.
6. Castillo, N. O., Gomez, H. W. & Bolfarine, H. (2011), 'Epsilon Birnbaum-Saunders distribution family: Properties and inference', Statistical Papers 52, 871-883.
7. Celik, N., Senoglu, B. & Arslan, O. (2015), 'Estimation and testing in one-way ANOVA when the errors are skew-normal', Revista Colombiana de Estadística 38(1), 75-91.
8. Choy, S. T. B. & Chan, J. S. K. (2008), 'Scale mixtures distributions in statistical modelling', Australian & New Zealand Journal of Statistics 50(2), 135-146.
9. Diaz-Garcia, J. A. & Leiva-Sanchez, V. (2005), 'A new family of life distributions based on the contoured elliptically distributions', Journal of Statistical Planning and Inference 128(2), 445-457.
10. Elal-Olivero, D. (2010), 'Alpha-skew normal distribution', Proyecciones Journal of Mathematics 29, 224-240.
11. Fung, T. & Seneta, E. (2010), 'Extending the multivariate generalised t and generalised VG distributions', Proyecciones Journal of Mathematics 101, 154-164.
12. Genc, A. I. (2013), 'The generalized t Birnbaum-Saunders Family', Statistics 47, 613-625.
13. Genton, G. G. (2004), Skew-Elliptical Distributions and their Applications: A Journey beyond Normality, Chapman & Hall/CRC, Boca Raton, Florida.
14. Gomez, H. W., Elal-Olivero, D., Salinas, H. S. & Bolfarine, H. (2011), 'Bimodal extension based on skew-normal distribution with application to pollen data', Environmetrics 22, 50-62.
15. Gomez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), 'An extension of the generalized Birnbaum-Saunders distribution', Statistics & Probability Letters 79, 331-338.
16. Johnson, N. L., Kotz, S. & Balakrishnan, N. (2004), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley, New York.
17. Kantar, Y. M., Usta, I. & Acitas, S. (2011), 'A Monte Carlo simulation study on partially adaptive estimators of linear regression models', Journal of Applied Statistics 38, 1681-1699.
18. Kasap, P., Senoglu, B., Arslan, O. & Acitas, S. (2011), 'Estimating the location and scale parameters of the generalized t distribution', E-journal of New World Science Academy Physical Sciences 6, 103-111.
19. Lye, J. N. & Martin, V. L. (1993), 'Robust estimation, nonnormalities and generalized exponential distributions', Journal of the American Statistical Association 88, 261-267.
20. Ma, Y. & Genton, M. G. (2004), 'Flexible class of skew-symmetric distributions', Scandinavian Journal of Statistics 31, 459-468.
21. Martínez-Flórez, G., Vergara-Cardozo, S. & González, L. M. (2013), 'The family of log-skew-normal alpha-power distributions using precipitation data', Revista Colombiana de Estadística 36(1), 43-57.
22. McDonald, J. B. & Nelson, R. D. (1989), 'Alternative beta estimation for the market model using partially adaptive techniques', Communications in Statistics - Theory and Methods 18(11), 4039-4058.
23. McDonald, J. B. & Nelson, R. D. (1993), 'Beta estimation in the market model: Skewness and leptokurtosis', Communications in Statistics - Theory and Methods 22(10), 2843-2862.
24. McDonald, J. B. & Newey, W. K. (1988), 'Partially adaptive estimation of regression models via the generalized t distribution', Econometric Theory 4, 428-457.
25. Nadarajah, S. (2008), 'On the generalized t (GT) distribution', Statistics 42, 467-473.
26. Pereira, J. R., Marques, L. A. & da Costa, J. M. (2012), 'An empirical comparison of EM initialization methods and model choice criteria for mixtures of skew-normal distributions', Revista Colombiana de Estadística 35(3), 457-478.
27. Theodossiou, P. (1998), 'Financial data and the skewed generalized t distribution', Management Science Part 1 12, 1650-1661.
28. Tiku, M. L., Islam, M. Q. & Selcuk, S. A. (2001), 'Nonnormal regression. II. Symmetric distributions', Communications in Statistics - Theory and Methods 30(6), 1021-1045.
29. Venegas, O., Rodríguez, F., Gomez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2012), 'Robust modeling using the generalized epsilon-skew-t distribution', Journal of Applied Statistics 39(12), 2685-2698.
30. Vilca-Labra, F. & Leiva-Sánchez, V. (2006), 'A new fatigue life model based on the family of skew-elliptical distributions', Communications in Statistics - Theory and Methods 35(2), 229-244.
31. Wang, D. & Romagnoli, J. A. (2005), 'Generalized t distribution and its applications to process data reconciliation and process monitoring', Transactions of the Institute of Measurement and Control 27(5), 367-390.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n2a03,
AUTHOR = {Acitas, Sukru and Senoglu, Birdal and Arslan, Olcay},
TITLE = {{Alpha-Skew Generalized t Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {2},
pages = {353-370}
}
References
Acitas, S., Senoglu, B. & Arslan, O. (2013), Alpha-skew generalized t distribution, International Conference Applied Statistics, Slovenia.
Arellano-Valle, R. B., Cortes, M. A. & Gomez, H. W. (2010), ‘An extension of the epsilon-skew-normal distribution’, Communications in Statistics – Theory and Methods 39, 912–922.
Arslan, O. (2004), ‘Family of multivariate generalized t distributions’, Journal of Multivariate Analysis 89, 329–337.
Arslan, O. & Genc, A. I. (2003), ‘Robust location and scale estimation based on the univariate generalized t distribution’, Communications in Statistics – Theory and Methods 32, 1505–1525.
Butler, R. J., McDonald, J. B., Nelson, R. D. & White, S. (1990), ‘Robust and partially adaptive estimation of regression models’, The Review of Economics and Statistics 72, 321–327.
Castillo, N. O., Gomez, H. W. & Bolfarine, H. (2011), ‘Epsilon Birnbaum-Saunders distribution family: Properties and inference’, Statistical Papers 52, 871–883.
Celik, N., Senoglu, B. & Arslan, O. (2015), ‘Estimation and testing in One-Way ANOVA when the errors are skew-normal’, Revista Colombiana de Estadística 38(1), 75–91.
Choy, S. T. B. & Chan, J. S. K. (2008), ‘Scale mixtures distributions in statistical modelling’, Australian & New Zealand Journal of Statistics 50(2), 135–146.
Diaz-Garcia, J. A. & Leiva-Sanchez, V. (2005), ‘A new family of life distributions based on the contoured elliptically distributions’, Journal of Statistical Planning and Inference 128(2), 445–457.
Elal-Olivero, D. (2010), ‘Alpha-skew normal distribution’, Proyecciones Journal of Mathematics 29, 224–240.
Fung, T. & Seneta, E. (2010), ‘Extending the multivariate generalised t and generalised VG distributions’, Proyecciones Journal of Mathematics 101, 154–164.
Genc, A. I. (2013), ‘The generalized t Birnbaum-Saunders Family’, Statistics 47, 613–625.
Genton, G. G. (2004), Skew-Elliptical Distributions and their Applications: A Journey Beyond Normality, Chapman & Hall/CRC, Boca Raton, Florida.
Gomez, H. W., Elal-Olivero, D., Salinas, H. S. & Bolfarine, H. (2011), ‘Bimodal extension based on skew-normal distribution with application to pollen data’, Environmetrics 22, 50–62.
Gomez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), ‘An extension of the generalized Birnbaum-Saunders distribution’, Statistics & Probability Letters 79, 331–338.
Johnson, N. L., Kotz, S. & Balakrishnan, N. (2004), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley, New York.
Kantar, Y. M., Usta, I. & Acitas, S. (2011), ‘A monte carlo simulation study on partially adaptive estimators of linear regression models’, Journal of Applied Statistics 38, 1681–1699.
Kasap, P., Senoglu, B., Arslan, O. & Acitas, S. (2011), ‘Estimating the location and scale parameters of the generalized t distribution’, E-journal of New World Science Academy Physical Sciences 6, 103–111.
Lye, J. N. & Martin, V. L. (1993), ‘Robust estimation, nonnormalities and generalized exponential distributions’, Journal of the American Statistical Association 88, 261–267.
Ma, Y. & Genton, M. G. (2004), ‘Flexible class of skew-symmetric distributions’, Scandinavian Journal of Statistics 31, 459–468.
Martínez-Flórez, G., Vergara-Cardozo, S. & González, L. M. (2013), ‘The family of log-skew-normal alpha-power distributions using precipitation data’, Revista Colombiana de Estadística 36(1), 43–57.
McDonald, J. B. & Nelson, R. D. (1989), ‘Alternative beta estimation for the market model using partially adaptive techniques’, Communications in Statistics – Theory and Methods 18(11), 4039–4058.
McDonald, J. B. & Nelson, R. D. (1993), ‘Beta estimation in the market model: Skewness and leptokurtosis’, Communications in Statistics – Theory and Methods 22(10), 2843–2862.
McDonald, J. B. & Newey, W. K. (1988), ‘Partially adaptive estimation of regression models via the generalized t distribution’, Econometric Theory 4, 428– 457.
Nadarajah, S. (2008), ‘On the generalized t (GT) distribution’, Statistics 42, 467– 473.
Pereira, J. R., Marques, L. A. & da Costa, J. M. (2012), ‘An empirical comparison of EM initialization methods and model choice criteria for mixtures of skewnormal distributions’, Revista Colombiana de Estadística 35(3), 457–478.
Theodossiou, P. (1998), ‘Financial data and the skewed generalized t distribution’, Management Science Part 1 12, 1650–1661.
Tiku, M. L., Islam, M. Q. & Selcuk, S. A. (2001), ‘Nonnormal regression. II. Symmetric distributions’, Communications in Statistics – Theory and Methods 30(6), 1021–1045.
Venegas, O., Rodríguez, F., Gomez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2012), ‘Robust modeling using the generalized epsilon- skew- t distribution’, Journal of Applied Statistics 39(12), 2685–2698.
Vilca-Labra, F. & Leiva-Sánchez, V. (2006), ‘A new fatigue life model based on the family of skew-elliptical distributions’, Communications in Statistics – Theory and Methods 35(2), 229–244.
Wang, D. & Romagnoli, J. A. (2005), ‘Generalized t distribution and its applications to process data reconciliation and process monitoring’, Transactions of the Institute of Measurement and Control 27(5), 367–390.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Roberto Vila, Letícia Ferreira, Helton Saulo, Fábio Prataviera, Edwin Ortega. (2020). A bimodal gamma distribution: properties, regression model and applications. Statistics, 54(3), p.469. https://doi.org/10.1080/02331888.2020.1764560.
2. M. S. Talha Arslan, Birdal Senoglu. (2018). Type II Censored Samples in Experimental Design Under Jones and Faddy’s Skew t Distribution. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), p.2145. https://doi.org/10.1007/s40995-017-0398-3.
3. S. Acitas. (2018). A new weighted distribution as an extension of the generalized half-normal distribution with applications. Journal of Statistical Computation and Simulation, 88(12), p.2325. https://doi.org/10.1080/00949655.2018.1462812.
4. Rui Li, Saralees Nadarajah. (2020). A review of Student’s t distribution and its generalizations. Empirical Economics, 58(3), p.1461. https://doi.org/10.1007/s00181-018-1570-0.
5. Efrén V. Herrera, Edgar M. Vela, Victor A. Arce, Katherine G. Molina, Nathaly S. Sánchez, Paúl J. Daza, Luis E. Herrera, Douglas A. Plaza. (2020). Temperature Influences at the Myoelectric Level in the Upper Extremities of the Human Body. The Open Biomedical Engineering Journal, 14(1), p.28. https://doi.org/10.2174/1874120702014010028.
6. Ruijie Guan, Xu Zhao, Weihu Cheng, Yaohua Rong. (2021). A New Generalized t Distribution Based on a Distribution Construction Method. Mathematics, 9(19), p.2413. https://doi.org/10.3390/math9192413.
7. Meisam MOGHİMBEYGİ, Mousa GOLALİZADEH. (2021). A new extension of von Mises-Fisher distribution. Hacettepe Journal of Mathematics and Statistics, 50(6), p.1838. https://doi.org/10.15672/hujms.788296.
8. Emrah Altun, Huseyin Tatlidil, Gamze Ozel, Saralees Nadarajah. (2018). A new generalization of skew-T distribution with volatility models. Journal of Statistical Computation and Simulation, 88(7), p.1252. https://doi.org/10.1080/00949655.2018.1427240.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2015 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).