Published

2015-07-01

Slashed Exponentiated Rayleigh Distribution

Distribución Slash Rayleigh exponenciada

DOI:

https://doi.org/10.15446/rce.v38n2.51673

Keywords:

Exponentiated Rayleigh Distribution, Kurtosis, Maximum Likelihood, Rayleigh Distribution, Slash Distribution (en)
Curtosis, Distribución Rayleigh, Distribución Rayleigh exponenciada, Distribución Slash, Máxima verosimilitud. (es)

Downloads

Authors

  • Hugo S. Salinas Universidad de Atacama, Copiapó, Chile
  • Yuri A. Iriarte Instituto Tecnológico, Universidad de Atacama, Copiapó, Chile
  • Heleno Bolfarine IME, Universidad de Sao Paulo, Sao Paulo, Brasil

In this paper we introduce a new distribution for modeling positive data with high kurtosis. This distribution can be seen as an extension of the exponentiated Rayleigh distribution. This extension builds on the quotient of two independent random variables, one exponentiated Rayleigh in the numerator and Beta(q,1) in the denominator with q>0. It is called the slashed exponentiated Rayleigh random variable. There is evidence that the distribution of this new variable can be more flexible in terms of modeling the kurtosis regarding the exponentiated Rayleigh distribution. The properties of this distribution are studied and the parameter estimates are calculated using the maximum likelihood method. An application with real data reveals good performance of this new distribution.

En este trabajo presentamos una nueva distribución para modelizar datos positivos con alta curtosis. Esta distribución puede ser vista como una extensión de la distribución Rayleigh exponenciada. Esta extensión se construye en base al cuociente de dos variables aleatorias independientes, una Raileigh exponenciada en el numerador y una Beta(q; 1) en el denominador con q > 0. La llamaremos variable aleatoria slash Rayleigh exponenciada. Hay evidencias que la distribución de esta nueva variable puede ser más flexible en términos de modelizar la curtosis respecto a la distribución Rayleigh exponenciada. Se estudian las propiedades de esta distribución y se calculan las estimaciones de los parámetros utilizando el método de máxima verosimilitud. Una aplicación con datos reales revela el buen rendimiento de esta nueva distribución.

https://doi.org/10.15446/rce.v38n2.51673

Slashed Exponentiated Rayleigh Distribution

Distribución recortada Rayleigh exponenciada

HUGO S. SALINAS1, YURI A. IRIARTE2, HELENO BOLFARINE3

1Universidad de Atacama, Facultad de Ingeniería, Departamento de Matemática, Copiapó, Chile. Professor. Email: hugo.salinas@uda.cl
2Universidad de Atacama, Instituto Tecnológico, Copiapó, Chile. Professor. Email: yuri.iriarte@uda.cl
3Universidad de Sao Paulo, IME, Departamento de Estatística, Sao Paulo, Brasil. Professor. Email: hbolfar@ime.usp.br


Abstract

In this paper we introduce a new distribution for modeling positive data with high kurtosis. This distribution can be seen as an extension of the exponentiated Rayleigh distribution. This extension builds on the quotient of two independent random variables, one exponentiated Rayleigh in the numerator and Beta(q, 1) in the denominator with q > 0. It is called the slashed exponentiated Rayleigh random variable. There is evidence that the distribution of this new variable can be more flexible in terms of modeling the kurtosis regarding the exponentiated Rayleigh distribution. The properties of this distribution are studied and the parameter estimates are calculated using the maximum likelihood method. An application with real data reveals good performance of this new distribution.

Key words: Exponentiated Rayleigh Distribution, Kurtosis, Maximum Likelihood, Rayleigh Distribution, Slash Distribution.


Resumen

En este trabajo presentamos una nueva distribución para modelizar datos positivos con alta curtosis. Esta distribución puede ser vista como una extensión de la distribución Rayleigh exponenciada. Esta extensión se construye en base al cuociente de dos variables aleatorias independientes, una Raileigh exponenciada en el numerador y una Beta(q, 1) en el denominador con q > 0. La llamaremos variable aleatoria recortada Rayleigh exponenciada. Hay evidencias que la distribución de esta nueva variable puede ser más flexible en términos de modelizar la curtosis respecto a la distribución Rayleigh exponenciada. Se estudian las propiedades de esta distribución y se calculan las estimaciones de los parámetros utilizando el método de máxima verosimilitud. Una aplicación con datos reales revela el buen rendimiento de esta nueva distribución.

Palabras clave: curtosis, distribución Rayleigh, distribución Rayleigh exponenciada, distribución recortada, máxima verosimilitud.


Texto completo disponible en PDF


References

1. Akaike, H. A. (1974), 'A new look at statistical model identification', IEEE Transaction on Automatic Control 19(6), 716-723.

2. Andrews, D. F. & Herzberg, A. M. (1985), Data: A Collection of Problems From Many Fields for the Student and Research Worker, Springer, New York.

3. Arslan, O. (2008), 'An alternative multivariate skew-slash distribution', Statistics & Probability Letters 78(16), 2756-2761.

4. Barlow, R. E., Toland, R. H. & Freeman, T. (1984), A Bayesian analysis of stress-rupture life of Kevlar 49/epoxy spherical pressure vessels, 'Proceedings of the Canadian conference in application statistics', Marcel Dekker, New York.

5. Cancho, V. G., Bolfarine, H. & Achcar, J. A. (1999), 'A Bayesian analysis of the exponentiated-Weibull distribution', Journal of Applied Statistical Science 8, 227-242.

6. Fang, K. T., Kotz, S. & Ng, K. W. (1990), Symmetric Multivariate and Related Distributions, Chapman and Hall, London-New York.

7. Genc, A. (2007), 'A generalization of the univariate slash by a scale-mixtured exponential power distribution', Communications in Statistics-Simulation and Computation 36, 937-947.

8. Gómez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), 'An extension of the generalized Birnbaum-Saunders distribution', Statistics & Probability Letters 79(3), 331-338.

9. Gómez, H. W., Quintana, F. A. & Torres, F. J. (2007), 'A new family of slash-distributions with elliptical contours', Statistics & Probability Letters 77(7), 717-725.

10. Iriarte, Y. A., Gómez, H. W., Varela, H. & Bolfarine, H. (2015), 'Slashed Rayleigh distribution', Revista Colombiana de Estadística 38(1), 31-44.

11. Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Wiley, New York.

12. Leiva, V., Soto, G., Cabrera, E. & Cabrera, G. (2011), 'Nuevas cartas de control basadas en la distribución Birnbaum-Saunders y su implementación', Revista Colombiana de Estadística 34(1), 147-176.

13. Mosteller, F. & Tukey, J. W. (1977), Data Analysis and Regression: A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quan-titative Methods. Reading, Massachusetts.

14. Nadarajah, S., Cordeiro, G. M. & Ortega, E. M. M. (2013), 'The exponentiated Weibull distribution: A survey', Statistical Papers 54(3), 839-877.

15. Olivares--Pacheco, J. F., Cornide-Reyes, H. & Monasterio, M. (2010), 'Una extensión de la distribución Weibull de dos parámetros', Revista Colombiana de Estadística 33(2), 219-231.

16. Olmos, N. M., Varela, H., Gómez, H. W. & Bolfarine, H. (2012), 'An extension of the half-normal distribution', Statistical Papers 53(4), 875-886.

17. R Core Team, (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *{http://www.R-project.org/}

18. Rogers, W. H. & Tukey, J. W. (1972), 'Understanding some long-tailed symmetrical distributions', Statistica Neerlandica 26, 211-226.

19. Schwarz, G. (1978), 'Estimating the dimension of a model', Annals of Statistics 6, 461-464.

20. Wang, J. & Genton, M. G. (2006), 'The multivariate skew-slash distribution', Journal of Statistical Planning and Inference 136, 209-220.


[Recibido en marzo de 2014. Aceptado en enero de 2015]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv38n2a01,
    AUTHOR  = {Salinas, Hugo S. and Iriarte, Yuri A. and Bolfarine, Heleno},
    TITLE   = {{Slashed Exponentiated Rayleigh Distribution}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2015},
    volume  = {38},
    number  = {2},
    pages   = {453-466}
}

References

Akaike, H. A. (1974), ‘A new look at statistical model identification’, IEEE Transaction on Automatic Control 19(6), 716–723.

Andrews, D. F. & Herzberg, A. M. (1985), Data: a collection of problems from many fields for the student and research worker, Springer, New York.

Arslan, O. (2008), ‘An alternative multivariate skew-slash distribution’, Statistics & Probability Letters 78(16), 2756–2761.

Barlow, R. E., Toland, R. H. & Freeman, T. (1984), A Bayesian analysis of stressrupture life of Kevlar 49/epoxy spherical pressure vessels, in ‘Proceedings of the Canadian conference in application statistics’, Marcel Dekker, New York.

Cancho, V. G., Bolfarine, H. & Achcar, J. A. (1999), ‘A Bayesian analysis of the exponentiated-Weibull distribution’, Journal of Applied Statistical Science 8, 227–242.

Fang, K. T., Kotz, S. & Ng, K. W. (1990), Symmetric Multivariate and Related Distributions, Chapman and Hall, London-New York.

Genc, A. (2007), ‘A generalization of the univariate slash by a scale-mixtured exponential power distribution’, Communications in Statistics-Simulation and Computation 36, 937–947.

Gómez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), ‘An extension of the generalized Birnbaum-Saunders distribution’, Statistics & Probability Letters 79(3), 331–338.

Gómez, H. W., Quintana, F. A. & Torres, F. J. (2007), ‘A new family of slash-distributions with elliptical contours’, Statistics & Probability Letters 77(7), 717–725.

Iriarte, Y. A., Gómez, H. W., Varela, H. & Bolfarine, H. (2015), ‘Slashed Rayleigh distribution’, Revista Colombiana de Estadística 38(1), 31–44.

Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Wiley, New York.

Leiva, V., Soto, G., Cabrera, E. & Cabrera, G. (2011), ‘Nuevas cartas de control basadas en la distribución Birnbaum-Saunders y su implementación’, Revista Colombiana de Estadística 34(1), 147–176.

Mosteller, F. & Tukey, J. W. (1977), Data Analysis and Regression: A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods. Reading, Massachusetts.

Nadarajah, S., Cordeiro, G. M. & Ortega, E. M. M. (2013), ‘The exponentiated Weibull distribution: A survey’, Statistical Papers 54(3), 839–877.

Olivares-Pacheco, J. F., Cornide-Reyes, H. & Monasterio, M. (2010), ‘Una extensión de la distribución Weibull de dos parámetros’, Revista Colombiana de Estadística 33(2), 219–231.

Olmos, N. M., Varela, H., Gómez, H. W. & Bolfarine, H. (2012), ‘An extension of the half-normal distribution’, Statistical Papers 53(4), 875–886.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.*http://www.R-project.org/

Rogers, W. H. & Tukey, J. W. (1972), ‘Understanding some long-tailed symmetrical distributions’, Statistica Neerlandica 26, 211–226.

Schwarz, G. (1978), ‘Estimating the dimension of a model’, Annals of Statistics 6, 461–464.

Wang, J. & Genton, M. G. (2006), ‘The multivariate skew-slash distribution’, Journal of Statistical Planning and Inference 136, 209–220.

How to Cite

APA

Salinas, H. S., Iriarte, Y. A. and Bolfarine, H. (2015). Slashed Exponentiated Rayleigh Distribution. Revista Colombiana de Estadística, 38(2), 453–466. https://doi.org/10.15446/rce.v38n2.51673

ACM

[1]
Salinas, H.S., Iriarte, Y.A. and Bolfarine, H. 2015. Slashed Exponentiated Rayleigh Distribution. Revista Colombiana de Estadística. 38, 2 (Jul. 2015), 453–466. DOI:https://doi.org/10.15446/rce.v38n2.51673.

ACS

(1)
Salinas, H. S.; Iriarte, Y. A.; Bolfarine, H. Slashed Exponentiated Rayleigh Distribution. Rev. colomb. estad. 2015, 38, 453-466.

ABNT

SALINAS, H. S.; IRIARTE, Y. A.; BOLFARINE, H. Slashed Exponentiated Rayleigh Distribution. Revista Colombiana de Estadística, [S. l.], v. 38, n. 2, p. 453–466, 2015. DOI: 10.15446/rce.v38n2.51673. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/51673. Acesso em: 22 jan. 2025.

Chicago

Salinas, Hugo S., Yuri A. Iriarte, and Heleno Bolfarine. 2015. “Slashed Exponentiated Rayleigh Distribution”. Revista Colombiana De Estadística 38 (2):453-66. https://doi.org/10.15446/rce.v38n2.51673.

Harvard

Salinas, H. S., Iriarte, Y. A. and Bolfarine, H. (2015) “Slashed Exponentiated Rayleigh Distribution”, Revista Colombiana de Estadística, 38(2), pp. 453–466. doi: 10.15446/rce.v38n2.51673.

IEEE

[1]
H. S. Salinas, Y. A. Iriarte, and H. Bolfarine, “Slashed Exponentiated Rayleigh Distribution”, Rev. colomb. estad., vol. 38, no. 2, pp. 453–466, Jul. 2015.

MLA

Salinas, H. S., Y. A. Iriarte, and H. Bolfarine. “Slashed Exponentiated Rayleigh Distribution”. Revista Colombiana de Estadística, vol. 38, no. 2, July 2015, pp. 453-66, doi:10.15446/rce.v38n2.51673.

Turabian

Salinas, Hugo S., Yuri A. Iriarte, and Heleno Bolfarine. “Slashed Exponentiated Rayleigh Distribution”. Revista Colombiana de Estadística 38, no. 2 (July 1, 2015): 453–466. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/51673.

Vancouver

1.
Salinas HS, Iriarte YA, Bolfarine H. Slashed Exponentiated Rayleigh Distribution. Rev. colomb. estad. [Internet]. 2015 Jul. 1 [cited 2025 Jan. 22];38(2):453-66. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/51673

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Najwan Alsadat, Ehab M. Almetwally, Mohammed Elgarhy, Hijaz Ahmad, Ghareeb A. Marei. (2023). Bayesian and non-Bayesian analysis with MCMC algorithm of stress-strength for a new two parameters lifetime model with applications. AIP Advances, 13(9) https://doi.org/10.1063/5.0167295.

2. Jaine de Moura Carvalho, Frank Gomes-Silva, Josimar M. Vasconcelos, Gauss M. Cordeiro. (2025). The slashed Lomax distribution: new properties and Mellin-type statistical measures for inference. Journal of Applied Statistics, , p.1. https://doi.org/10.1080/02664763.2025.2451977.

3. M. S. Eliwa, M. El-Morshedy. (2022). A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications. Journal of Applied Statistics, 49(10), p.2467. https://doi.org/10.1080/02664763.2021.1905787.

4. Ali Algarni, Abdullah M. Almarashi. (2022). A New Rayleigh Distribution: Properties and Estimation Based on Progressive Type-II Censored Data with an Application. Computer Modeling in Engineering & Sciences, 130(1), p.379. https://doi.org/10.32604/cmes.2022.017714.

5. Sanku Dey, Enayetur Raheem, Saikat Mukherjee. (2017). Statistical properties and different methods of estimation of transmuted Rayleigh distribution. Revista Colombiana de Estadística, 40(1), p.165. https://doi.org/10.15446/rce.v40n1.56153.

6. M.M. Abd El-Raouf, Mohammed AbaOud. (2023). A novel extension of generalized Rayleigh model with engineering applications. Alexandria Engineering Journal, 73, p.269. https://doi.org/10.1016/j.aej.2023.04.063.

Dimensions

PlumX

Article abstract page views

514

Downloads

Download data is not yet available.