Publicado
A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression
Un enfoque bayesiano para la estimación de los parámetros del modelo regresión Simplex: una comparación con la regresión Beta
Palabras clave:
Beta distribution, Gibbs sampler, Heterogeneous, Proportions, Simplex distribution, Variances (en)distribución beta, distribución simplex, muestreador de Gibbs, proporciones, varianza heterogénea. (es)
Algunas variables están restringidas al intervalo abierto (0; 1) y para trabajar con ellas se han desarrollado diversos métodos bajo el esquema del análisis de regresión. La mayoría de ellos han sido concebidos originalmente para ser estimados por métodos de máxima verosimilitud. Los más naturales parecen descansar especialmente sobre las distribuciones Beta o Simplex.
En este trabajo se presenta el uso de técnicas Bayesianas para la estimación de los parámetros de la regresión Simplex respaldada con la aplicación de algunas simulaciones y comparaciones con la regresión Beta. Se presentan resultados para modelos de varianza constante y de varianza heterogénea para cada individuo. Se presenta un ejemplo con datos reales.
1Universidad de Valparaíso, Valparaíso, Chile. PhD Student. Email: freddy.vate01@gmail.com
Some variables are restricted to the open interval (0,1) and several methods have been developed to work with them under the scheme of the regression analysis. Most of research consider maximum likelihood methods and the use of Beta or Simplex distributions.
This paper presents the use of Bayesian techniques to estimate the parameters of the simplex regression supported on the implementation of some simulations and a comparison with Beta regression. We consider both models with constant variance and models with variance heterogeneity. Regressions are exemplified with heteroscedasticity.
Key words: Beta distribution, Gibbs sampler, Heterogeneous, Proportions, Simplex distribution, Variances.
Algunas variables están restringidas al intervalo abierto (0,1) y para trabajar con ellas se han desarrollado diversos métodos bajo el esquema del análisis de regresión. La mayoría de ellos han sido concebidos originalmente para ser estimados por métodos de máxima verosimilitud. Los más naturales parecen descansar especialmente sobre las distribuciones Beta o Simplex.
En este trabajo se presenta el uso de técnicas Bayesianas para la estimación de los parámetros de la regresión Simplex respaldada con la aplicación de algunas simulaciones y comparaciones con la regresión Beta. Se presentan resultados para modelos de varianza constante y de varianza heterogénea para cada individuo. Se presenta un ejemplo con datos reales.
Palabras clave: distribución beta, distribución simplex, muestreador de Gibbs, proporciones, varianza heterogénea.
Texto completo disponible en PDF
References
1. Barndorff-Nielsen, O. E. & Jørgensen, B. (1991), 'Some parametric models on the simplex', Journal of Multivariate Analysis 39, 106-116.
2. Blakely, T. & Collings, S. (2002), 'Is there a causal association between suicide rates and the political leanings of government?', Journal of Epidemiology and Community Health 56(10), 722.
3. Branscum, A. J., Johnson, W. O. & Thurmond, M. C. (2007), 'Bayesian Beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth desease viruses', Australian & New Zealand Journal of Statistics 49(3), 287-301.
4. Buckley, J. (2003), 'Estimation of models with Beta-distributed dependent variables: A replication and extension of Paolino's study', Political Analysis 11, 204-205.
5. CNE, (2008), 'Consejo Nacional Electoral', http://www.cne.gob.ve.
6. Cepeda, E. (2012), Beta regression models: joint mean and variance modeling, Universidad Nacional de Colombia.
7. Cepeda, E. & Gamerman, D. (2001), 'Bayesian modeling of variance heterogeneity in normal regression models', Brazilian Journal of Probability and Statistics 14, 207-221.
8. Cepeda, E. & Garrido, L. (2011), Bayesian Beta regression models: joint mean and precision modeling, Universidad Nacional de Colombia.
9. Cook, D. O., Kieschnick, R. & McCullough, B. D. (2008), 'Regression analysis of proportions in finance with self selection', Journal of Empirical Finance 15, 860-867.
10. Cribari-Neto, F. & Zeileis, A. (2010), 'Beta regression in R', Journal of Empirical Finance 34(2), 1-24.
11. Eskelson, N. I., Madsen, L., Hagar, J. C. & Temesgen, H. (2011), 'Estimating Riparian understory vegetation cover with Beta regression and copula models', Forest Science 57(3), 212-221.
12. Ferrari, S. L. P. & Cribari-Neto, F. (2004), 'Beta regression for modeling rates and proportions', Journal of Applied Statistics 31(7), 799-815.
13. Gelman, A., Carlin, B. P., Stern, H. S. & Rubin, D. B. (2003), Bayes and Empirical Bayes Methods for Analysis, 2 edn, Chapman & Hall/CRC.
14. Giovanetti, A. C. (2007), Efeitos da especificaçao incorreta da funçao de ligaçao no modelo de regressão beta, Master's thesis, USP, Sao Paulo.
15. INE, (2008), 'Instituto Nacional de Estadística', http://www.ine.gob.ve.
16. Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley & Sons.
17. Jørgensen, B. (1997), The Theory of Dispersion Models, Monographs on Statistics and Applied Probability, Taylor & Francis.
18. Kieschnick, R. & McCullough, B. D. (2003), 'Regression analysis of variates observed on (0,1): percentages, proportions and fractions', Statistical Modelling 3, 193-213.
19. Martyn, P. (2011), rjags: Bayesian graphical models using MCMC. R package version 3-5.
20. McCullagh, P. & Nelder, J. A. (1989) Generalized Linear Models, Second Edition in'Monographs on Statistics and Applied Probability' number 37 London: Chapman & Hall
21. Miyashiro, E. S. (2008), Modelos de regressão Beta e simplex para análise de proporçoes no modelo de regressão Beta, Master's thesis, USP, Sao Paulo.
22. Ospina, R. & Ferrari, S. L. (2010), 'Inflated beta distributions', Statistical Papers 51, 111-126.
23. Page, A., Morrell, S. & Taylor, R. (2002), 'Suicide and political regime in New South Wales and Australia during the 20th century', Journal of Epidemiology and Community Health 56(10), 766-772.
24. Paolino, P. (2001), 'Maximum likelihood estimation of models with Beta-distributed dependent variables', Political Analysis 9, 325-346.
25. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
26. Santos, L. A. (2011), Modelos de Regressão Simplex: Resíduos de Pearson Corrigidos e Aplicações, PhD thesis, Escola Superior de Agricultura ''Luiz de Queiroz'', Universidade de São Paulo.
27. Shaw, M., Dorling, D. & Smith, G. D. (2002), 'Mortality and political climate: How suicide rates have risen during periods of Conservative government, 1901-2000', Journal of Epidemiology and Community Health 56(10), 723-725.
28. Smith, G. D. & Dorling, D. (1996), '''I'm all right, John'': Voting patterns and mortality in England and Wales', British Medical Journal 313(21), 1573-1577.
29. Smithson, M. & Verkuilen, J. (2006), 'A better lemon squeezer? Maximum-likelihood regression with Beta-distributed dependent variables', Psychological Methods 11, 54-71.
30. Song, X. K. (2007), Correlated Data Analysis: Modeling, Analytics, and Applications, Springer, New York.
31. Song, X., Qiu, Z. & Tan, M. (2004), 'Modelling heterogeneous dispersion in marginal models for longitudinal proportional data', Biometrical Journal 5, 540-553.
32. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002), 'Bayesian measures of model complexity and fit (with discussion)', Statistical Methodology Series B 64(4), 583-639.
33. Sturtz, S., Ligges, U. & Gelman, A. (2005), 'R2WinBUGS: a package for running WinBUGS from R', Journal of Statistical Software 12(3), 1-16.
34. Verkuilen, J. & Smithson, M. (2011), 'Mixed and mixture regression models for continuous bounded responses using the Beta distribution', Journal of Educational and Behavioral Statistics 000, 1-32.
35. Zimprich, D. (2010), 'Modeling change in skewed variables using mixed Beta regression models', Research in Human Development 7(1), 9-26.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv36n1a01,
AUTHOR = {López, Freddy Omar},
TITLE = {{A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2013},
volume = {36},
number = {1},
pages = {1-21}
}
Referencias
Barndorff-Nielsen, O. E. & Jørgensen, B. (1991), ‘Some parametric models on the simplex’, Journal of Multivariate Analysis 39, 106–116.
Blakely, T. & Collings, S. (2002), ‘Is there a causal association between suicide rates and the political leanings of government?’, Journal of Epidemiology and Community Health 56(10), 722.
Branscum, A. J., Johnson, W. O. & Thurmond, M. C. (2007), ‘Bayesian Beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth desease viruses’, Australian & New Zealand Journal of Statistics 49(3), 287–301.
Buckley, J. (2003), ‘Estimation of models with Beta-distributed dependent variables: A replication and extension of Paolino’s study’, Political Analysis 11, 204–205.
Cepeda, E. (2012), Beta regression models: Joint mean and variance modeling, Technical report, Universidad Nacional de Colombia.
Cepeda, E. & Gamerman, D. (2001), ‘Bayesian modeling of variance heterogeneity in normal regression models’, Brazilian Journal of Probability and Statistics 14, 207–221.
Cepeda, E. & Garrido, L. (2011), Bayesian Beta regression models: Joint mean and precision modeling, Technical report, Universidad Nacional de Colombia.
CNE (2008), ‘Consejo Nacional Electoral’, http://www.cne.gob.ve.
Cook, D. O., Kieschnick, R. & McCullough, B. D. (2008), ‘Regression analysis of proportions in finance with self selection’, Journal of Empirical Finance 15, 860–867.
Cribari-Neto, F. & Zeileis, A. (2010), ‘Beta regression in R’, Journal of Empirical Finance 34(2), 1–24.
Eskelson, N. I., Madsen, L., Hagar, J. C. & Temesgen, H. (2011), ‘Estimating Riparian understory vegetation cover with Beta regression and copula models’, Forest Science 57(3), 212–221.
Ferrari, S. L. P. & Cribari-Neto, F. (2004), ‘Beta regression for modeling rates and proportions’, Journal of Applied Statistics 31(7), 799–815.
Gelman, A., Carlin, B. P., Stern, H. S. & Rubin, D. B. (2003), Bayes and Empirical Bayes Methods for Analysis, 2 edn, Chapman & Hall/CRC.
Giovanetti, A. C. (2007), Efeitos da especificaçao incorreta da funçao de ligaçao no modelo de regressão beta, Master’s thesis, USP, Sao Paulo.
INE (2008), ‘Instituto Nacional de Estadística’, http://www.ine.gob.ve.
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 2, 2 edn, John Wiley & Sons.
Jørgensen, B. (1997), The Theory of Dispersion Models, Monographs on Statistics and Applied Probability, Taylor & Francis.
Kieschnick, R. & McCullough, B. D. (2003), ‘Regression analysis of variates observed on (0,1): Percentages, proportions and fractions’, Statistical Modelling 3, 193–213.
Martyn, P. (2011), rjags: Bayesian graphical models using MCMC. R package version 3-5.
McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, Second Edition, number 37 in ‘Monographs on Statistics and Applied Probability’, London: Chapman & Hall.
Miyashiro, E. S. (2008), Modelos de regressão Beta e simplex para análise de proporçoes no modelo de regressão Beta, Master’s thesis, USP, Sao Paulo.
Ospina, R. & Ferrari, S. L. (2010), ‘Inflated beta distributions’, Statistical Papers 51, 111–126.
Page, A., Morrell, S. & Taylor, R. (2002), ‘Suicide and political regime in New South Wales and Australia during the 20th century’, Journal of Epidemiology and Community Health 56(10), 766-772.
Paolino, P. (2001), ‘Maximum likelihood estimation of models with Betadistributed dependent variables’, Political Analysis 9, 325–346.
R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Santos, L. A. (2011), Modelos de Regressão Simplex: Resíduos de Pearson Corrigidos e Aplicações, PhD thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.
Shaw, M., Dorling, D. & Smith, G. D. (2002), ‘Mortality and political climate: How suicide rates have risen during periods of Conservative government, 1901–2000’, Journal of Epidemiology and Community Health 56(10), 723–725.
Smith, G. D. & Dorling, D. (1996), “ I’m all right, John”: Voting patterns and mortality in England and Wales’, British Medical Journal 313(21), 1573–1577.
Smithson, M. & Verkuilen, J. (2006), ‘A better lemon squeezer? Maximumlikelihood regression with Beta-distributed dependent variables’, Psychological Methods 11, 54–71.
Song, X. K. (2007), Correlated Data Analysis: Modeling, Analytics, and Applications, Springer, New York.
Song, X., Qiu, Z. & Tan, M. (2004), ‘Modelling heterogeneous dispersion in marginal models for longitudinal proportional data’, Biometrical Journal 5, 540–553.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002), ‘Bayesian measures of model complexity and fit (with discussion)’, Statistical Methodology Series B 64(4), 583–639.
Sturtz, S., Ligges, U. & Gelman, A. (2005), ‘R2WinBUGS: A package for running WinBUGS from R’, Journal of Statistical Software 12(3), 1–16.
Verkuilen, J. & Smithson, M. (2011), ‘Mixed and mixture regression models for continuous bounded responses using the Beta distribution’, Journal of Educational and Behavioral Statistics 000, 1–32.
Zimprich, D. (2010), ‘Modeling change in skewed variables using mixed Beta regression models’, Research in Human Development 7(1), 9–26.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2013 Revista Colombiana de Estadística

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).