Publicado

2013-01-01

The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data

La familia de distribuciones alfa-potencia log-skew-normal usando datos de precipitación

Palabras clave:

symmetry, Fisher information matrix, Kurtosis, Likelihood ratio test, Maximum likelihood estimator. (en)
Asimetría, curtosis, estimador máxima verosimilitud, matriz de información de Fisher, test de razón de verosimilitud. (es)

Descargas

Autores/as

  • Guillermo Martínez-Flórez niversidad de Córdoba. Departamento de Matemáticas y Estadística
  • Sandra Vergara-Cardozo Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Estadística
  • Luz Mery González Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Estadística
We present a new set of distributions for positive data based on a skewnormal alpha-power (PSN) model including a new parameter which in turn makes the log-skew-normal alpha-power (LPSN) model more flexible than both the log-normal (LN) model and log-skew-normal (LSN) model. The LPSN model contains the LN model and LSN model as special cases. Furthermore, it models positive data with asymmetry and kurtosis larger than the one permitted by the LN distribution. Precipitation data illustrates the usefulness of the LPSN model being less influenced by outliers.

Presentamos una nueva familia de distribuciones para datos positivos basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El modelo LPSN contiene el modelo LN y el modelo LSN como casos particulares. Además, modela datos positivos con asimetría y curtosis más allá de lo permitido por la distribución LN. Datos de precipitación ilustran la utilidad del modelo LPSN siendo menos influenciado por outliers.

The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data

La familia de distribuciones alfa-potencia log-skew-normal usando datos de precipitación

GUILLERMO MARTÍNEZ-FLÓREZ1, SANDRA VERGARA-CARDOZO2, LUZ MERY GONZÁLEZ3

1Universidad de Córdoba, Departamento de Matemáticas y Estadística, Montería, Colombia. Professor. Email: gmartinez@correo.unicordoba.edu.co
2Univesidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá D.C, Colombia. Assistant professor. Email: svergarac@unal.edu.co
3Univesidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá D.C, Colombia. Assistant professor. Email: lgonzalezg@unal.edu.co


Abstract

We present a new set of distributions for positive data based on a skew-normal alpha-power (PSN) model including a new parameter which in turn makes the log-skew-normal alpha-power (LPSN) model more flexible than both the log-normal (LN) model and log-skew-normal (LSN) model. The LPSN model contains the LN model and LSN model as special cases. Furthermore, it models positive data with asymmetry and kurtosis larger than the one permitted by the LN distribution. Precipitation data illustrates the usefulness of the LPSN model being less influenced by outliers.

Key words: Asymmetry, Fisher information matrix, Kurtosis, Likelihood ratio test, Maximum likelihood estimator.


Resumen

Presentamos una nueva familia de distribuciones para datos positivos basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El\linebreak modelo LPSN contiene el modelo LN y el modelo LSN como casos particulares. Además, modela datos positivos con asimetría y curtosis más allá de lo permitido por la distribución LN. Datos de precipitación ilustran la utilidad del modelo LPSN siendo menos influenciado por outliers.

Palabras clave: asimetría, curtosis, estimador máxima verosimilitud, matriz de información de Fisher, test de razón de verosimilitud.


Texto completo disponible en PDF


References

1. Arnold, B. C. & Beaver, R. (2002), 'Skewed multivariate models related to hidden truncation and/or selective reporting', Test 11(1), 37-39.

2. Azzalini, A. (1985), 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics 12(2), 171-178.

3. Chaibub-Neto, E. & Branco, M. (2003), Bayesian Reference Analysis for Binomial Calibration Problem, IME-USP.

4. Chiogna, M. (1998), 'Some results on the scalar skew-normal distribution', Journal Italian Statistical Society 1, 1-13.

5. DiCiccio, T. J. & Monti, A. C. (2004), 'Inferential aspects of the skew exponential power distribution', Journal of the American Statistical Association 99, 439-450.

6. Durrans, S. R. (1992), 'Distributions of fractional order statistics in hydrology', Water Resources Research, 1649-1655.

7. Gupta, D. & Gupta, R. C. (2008), 'Analyzing skewed data by power normal model', Test 17(1), 197-210.

8. Gupta, R. S. & Gupta, R. D. (2004), 'Generalized skew normal model', Test 13(2), 501-524.

9. IDEAM, (2006), Estudio Agroclimático del Departamento de Córdoba, Fondo Editorial Universidad de Córdoba.

10. Lin, G. D. & Stoyanov, J. (2009), 'The logarithmic skew-normal distributions are moment-indeterminate', Journal of Applied Probability 46(3), 909-916.

11. Martínez-Flórez, G. (2011), Extensões do modelo α-potêncial, Tese de Doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo.

12. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org

13. Rotnitzky, A., Cox, D. R., Bottai, M. & Robins, J. (2000), 'Likelihood-based inference with singular information matrix', Bernoulli 6(2), 243-284.


[Recibido en junio de 2012. Aceptado en abril de 2013]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv36n1a03,
    AUTHOR  = {Martínez-Flórez, Guillermo and Vergara-Cardozo, Sandra and González, Luz Mery},
    TITLE   = {{The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2013},
    volume  = {36},
    number  = {1},
    pages   = {43-57}
}

Referencias

Akaike, H. (1974), ‘A new look at statistical model identification’, IEEE Transaction on Automatic Control (AU-19), 716–722.

Arnold, B. C. & Beaver, R. (2002), ‘Skewed multivariate models related to hidden truncation and/or selective reporting’.

Azzalini, A. (1985), ‘A class of distributions which includes the normal ones’, Scandinavian Journal of Statistics (12), 171–178.

Chaibub-Neto, E. & Branco, M. (2003), Bayesian Reference Analysis for Binomial Calibration Problem, IME-USP.

Chiogna, M. (1998), ‘Some results on the scalar skew-normal distribution’, Journal Italian Statistical Society 1, 1–13.

DiCiccio, T. J. & Monti, A. C. (2004), ‘Inferential aspects of the skew exponential power distribution’, Journal of the American Statistical Association 99, 439–450.

Durrans, S. R. (1992), ‘Distributions of fractional order statistics in hydrology’, Water Resources Research pp. 1649–1655.

Gupta, D. & Gupta, R. C. (2008), ‘Analyzing skewed data by power normal model’,Test 17(1), 197–210.

Gupta, R. S. & Gupta, R. D. (2004), ‘Generalized skew normal model’, Test 13(2), 501–524.

IDEAM (2006), Estudio Agroclimático del Departamento de Córdoba, Fondo Editorial Universidad de Córdoba.

Lin, G. D. & Stoyanov, J. (2009), ‘The logarithmic skew-normal distributions are moment-indeterminate’, Journal of Applied Probability 46(3), 909–916.

Martínez-Flórez, G. (2011), Extensões do modelo -potêncial, Tese de doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo.

R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

*http://www.R-project.org

Rotnitzky, A., Cox, D. R., Bottai, M. & Robins, J. (2000), ‘Likelihood-based inference with singular information matrix’, Bernoulli 6(2), 243–284.

Cómo citar

APA

Martínez-Flórez, G., Vergara-Cardozo, S. y González, L. M. (2013). The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data. Revista Colombiana de Estadística, 36(1), 43–57. https://revistas.unal.edu.co/index.php/estad/article/view/39583

ACM

[1]
Martínez-Flórez, G., Vergara-Cardozo, S. y González, L.M. 2013. The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data. Revista Colombiana de Estadística. 36, 1 (ene. 2013), 43–57.

ACS

(1)
Martínez-Flórez, G.; Vergara-Cardozo, S.; González, L. M. The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data. Rev. colomb. estad. 2013, 36, 43-57.

ABNT

MARTÍNEZ-FLÓREZ, G.; VERGARA-CARDOZO, S.; GONZÁLEZ, L. M. The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data. Revista Colombiana de Estadística, [S. l.], v. 36, n. 1, p. 43–57, 2013. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/39583. Acesso em: 1 abr. 2025.

Chicago

Martínez-Flórez, Guillermo, Sandra Vergara-Cardozo, y Luz Mery González. 2013. «The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data». Revista Colombiana De Estadística 36 (1):43-57. https://revistas.unal.edu.co/index.php/estad/article/view/39583.

Harvard

Martínez-Flórez, G., Vergara-Cardozo, S. y González, L. M. (2013) «The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data», Revista Colombiana de Estadística, 36(1), pp. 43–57. Disponible en: https://revistas.unal.edu.co/index.php/estad/article/view/39583 (Accedido: 1 abril 2025).

IEEE

[1]
G. Martínez-Flórez, S. Vergara-Cardozo, y L. M. González, «The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data», Rev. colomb. estad., vol. 36, n.º 1, pp. 43–57, ene. 2013.

MLA

Martínez-Flórez, G., S. Vergara-Cardozo, y L. M. González. «The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data». Revista Colombiana de Estadística, vol. 36, n.º 1, enero de 2013, pp. 43-57, https://revistas.unal.edu.co/index.php/estad/article/view/39583.

Turabian

Martínez-Flórez, Guillermo, Sandra Vergara-Cardozo, y Luz Mery González. «The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data». Revista Colombiana de Estadística 36, no. 1 (enero 1, 2013): 43–57. Accedido abril 1, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/39583.

Vancouver

1.
Martínez-Flórez G, Vergara-Cardozo S, González LM. The Family of Log-Skew-Normal Alpha-Power Distributions using Precipitation Data. Rev. colomb. estad. [Internet]. 1 de enero de 2013 [citado 1 de abril de 2025];36(1):43-57. Disponible en: https://revistas.unal.edu.co/index.php/estad/article/view/39583

Descargar cita

Visitas a la página del resumen del artículo

385

Descargas