Publicado
Conditional Duration Model and Unobserved Market Heterogeneity of Traders. An Infinite Mixture of Non–Exponentials
Modelo de duración condicionada y heterogeneidad inobservada de los agentes. Una mezcla infinita de distribuciones no exponenciales
DOI:
https://doi.org/10.15446/rce.v39n2.51584Palabras clave:
Autoregressive conditional duration model, Exponential dis- tribution, Gamma distribution, Heterogeneity, Reciprocal inverse Gaussian distribution (en)Modelo de duración autorregresivo condicional, Distribución exponencial, Distribución Gamma,, Heterogeneidad, Distribución recíproca inversa gaussiana (es)
Descargas
Este trabajo extiende el modelo de duración condicionada propuesto por
Luca & Zuccolotto (2003) introduciendo una mezcla infinita de distribuciones no exponenciales que permite incorporar la heterogeneidad inobservada en el mercado por los agentes. El modelo propuesto tiene en cuenta el hecho de que el tiempo de respuesta sigue una distribución gamma y que el parámetro que mide la intensidad sigue una distribución recíproca inversa Gaussiana. Esta modelización permite no sólo capturar distintas formas de la distribución de la duración sino que también captura funciones de azar no monótonas. El modelo propuesto es fácil de ajustar a datos de duración proporcionando resultados razonables y competitivos con otros modelos utilizados en la literatura.
https://doi.org/10.15446/rce.v39n2.51584
1University of Las Palmas de Gran Canaria and TIDES Institute, Department of Quantitative Methods, Las Palmas de Gran Canaria, Spain. Professor. Email: emilio.gomez-deniz@ulpgc.es
2University of Las Palmas de Gran Canaria, Department of Quantitative Methods, Las Palmas de Gran Canaria, Spain. Professor. Email: jv.perez-rodriguez@ulpgc.es
This paper extends the conditional duration model proposed by Luca & Zuccolotto (2003) proposing an infinite mixture of distributions based on non-exponentials that account for the unobserved market heterogeneity of traders. The model we propose takes into account the fact that reaction times follow a gamma distribution and that the intensity parameter follows the reciprocal of an inverse Gaussian distribution. This extension allows us to capture, not only various density shapes of durations, but also non-monotonic shapes of hazard functions. The model also allows us to test the unobserved heterogeneity of traders. This mixture model is easy to fit and characterises the behaviour of the conditional durations reasonably well.
Key words: Autoregressive conditional duration model, Exponentialdistribution, Gamma distribution, Heterogeneity, Reciprocalinverse gaussian distribution.
Este trabajo extiende el modelo de duración condicionada propuesto por Luca & Zuccolotto (2003) introduciendo una mezcla infinita de distribuciones no exponenciales que permite incorporar la heterogeneidad inobservada en el mercado por los agentes. El modelo propuesto tiene en cuenta el hecho de que el tiempo de respuesta sigue una distribución gamma y que el parámetro que mide la intensidad sigue una distribución recíproca inversa Gaussiana. Esta modelización permite no sólo capturar distintas formas de la distribución de la duración sino que también captura funciones de azar no monótonas. El modelo propuesto es fácil de ajustar a datos de duración proporcionando resultados razonables y competitivos con otros modelos utilizados en la literatura.
Palabras clave: modelo deduración autorregresivo condicional, distribución exponencial, distribución Gamma, heterogeneidad, distribución recíproca inversagaussiana.
Texto completo disponible en PDF
References
1. Abraham, B. & Balakrishnan, N. (1998), 'Inverse gaussian autoregressive models', Working Paper. University of Waterloo.
2. Balakrishnan, N. & Nevzorov, V. (2003), A Primer on Statistical Distributions, John Wiley and Sons, New York..
3. Bauwens, L. & Giot, P. (2000), 'The logarithmic acd model: an application to the bid-ask quote process of three nyse stocks', Annales d'Economie et de Statistique 60, 117-150.
4. Bauwens, L., Giot, P., Gramming, J. & Veredas, D. (2004), 'Comparison of financial duration models via density forecasts', International Journal of Forecasting 20, 598-609.
5. Bauwens, L. & Veredas, D. (2004), 'The stochastic conditional duration model: a latent factor model for the analysis of financial durations', Journal of Econometrics 119, 381-412.
6. Bhattacharya, S. & Kumar, S. (1986), 'E-ig model in life testing', Calcutta Statistical Association Bulletin 35, 85-90.
7. Bhatti, C. R. (2010), 'The birnbaum-saunders autoregressive conditional duration model', Mathematics and Computers in Simulation 79, 2250-2257.
8. Castillo, E., Hadi, A., Balakrishnan, N. & Sarabia, J. (2005), Extreme Value and Related Models with Applications in Engineering and Science, Wiley.
9. Chhikara, R. & Folks, T. (1989), The inverse Gaussian Distribution, Marcel Dekker, New York.
10. Clark, P. (1973), 'A subordinated stochastic process model with finite variance for speculative prices', Econometrica 41, 135-156.
11. Drost, F. C. & Werker, B. J. M. (2004), 'Semiparametric duration models', Journal of Business and Economic Statistics 22, 40-50.
12. Engle, R. & Russell, J. (1998), 'Autoregressive conditional duration: a new model for irregularly-spaced transaction data', Econometrica 66, 1127-1162.
13. Fernandes, M. & Grammig, J. (2006), 'A family of autoregressive conditional duration models', Journal of Econometrics 130, 1-23.
14. Frangos, N. & Karlis, D. (2004), 'Modelling losses using an exponential-inverse gaussian distribution', Insurance: Mathematics and Economics 35, 53-67.
15. Furman, E. & Zitikis, R. (2008), 'Weighted risk capital allocations', Insurance: Mathematics and Economics 43(2), 263-269.
16. Ghysels, E. (2000), 'Some econometric recipes for high-frequency data cooking', Journal of Business & Economic Statistics 18, 154-163.
17. Ghysels, E., Gourieroux, C. & Jasiak, J. (2004), 'Stochastic volatility duration', Journal of Econometrics 119, 413-433.
18. Gomez-Deniz, E., Calderin, E. & Sarabia, J. (2013), 'Gamma-generalized inverse gaussian class of distributions with applications', Communications in Statistics-Theory and Methods 42, 919-933.
19. Grammig, J. & Maurer, K. (2000), 'Non-monotonic hazard functions and the autoregressive conditional duration model', Econometrics Journal 3, 16-38.
20. Hanagal, D. & Dabade, A. (2013), 'Modeling inverse Gaussian frailty model for bivariate survival data', Communication in Statistics-Theory and Methods 42, 3744-3769.
21. Hougard, P. (1984), 'Life table methods for heterogeneous populations: distributions describing the heterogeneity', Biometrika 71, 75-83.
22. Jorgensen, B. (1982), Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, Springer-Verlag, New York.
23. Jorgensen, B., Seshadri, V. & Whitmore, G. (1991), 'On the mixture of the inverse gaussian distribution with its complementary reciprocal', Scandinavian Journal of Statistics 18, 77-89.
24. Lancaster, T. (1990), The Econometric Analysis of Transition Data, Cambridge University Press.
25. Lancaster, T. (2003), 'A stochastic model for the duration of a strike', Journal of the Royal Statistical Society, Series A 135(2), 257-271.
26. Luca, G. D. & Gallo, G. (2004), 'Mixture processes for intradaily financial durations', Studies in Nonlinear Dynamics and Econometrics 8(2), 1-18.
27. Luca, G. D. & Gallo, G. (2009), 'Time-varying mixing weights in mixture autoregressive conditional duration models', Econometric Reviews 28(1), 102-120.
28. Luca, G. D. & Zuccolotto, P. (2003), 'Finite and infinite mixtures for financial durations', Metron 61, 431-455.
29. Lunde, A. (1999), 'A generalized Gamma autoregressive conditional duration model', Discussion Paper. Aalborg Universiteit.
30. Mohtashami, G. R. & Mohtashami, H. A. (2011), 'Log-concavity property for some well-known distributions', Surveys in Mathematics and its Applications 6, 203-219.
31. O'Hara, M. (1995), Market Microstruture Theory, Basil Blackwell Inc., Oxford.
32. Seshadri, V. (1993), The Inverse Gaussian Distribution: A Case Study in Exponential Families, Oxford Science Publications.
33. Tsay, R. (2002), Analysis of financial time series, John Wiley & Sons.
34. Zhang, M., Russell, J. & Tsay, R. (1983), 'The inverse gaussian distribution: some properties and characterizations', The Canadian Journal of Statistics 11, 131-136.
35. Zhang, M., Russell, J. & Tsay, R. (2001), 'A nonlinear autoregressive conditional duration model with applications to financial transaction data', Journal of Econometrics 104(7), 179-207.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv39n2a09,
AUTHOR = {Gómez-Déniz, Emilio and Pérez-Rodríguez, Jorge V.},
TITLE = {{Conditional Duration Model and the Unobserved Market Heterogeneity of Traders: An Infinite Mixture of Non-Exponentials}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2016},
volume = {39},
number = {2},
pages = {307-325}
}
Referencias
Abraham, B. & Balakrishnan, N. (1998), ‘Inverse gaussian autoregressive models’, Working Paper. University of Waterloo.
Balakrishnan, N. & Nevzorov, V. (2003), A Primer on Statistical Distributions, John Wiley and Sons, New York.
Bauwens, L. & Giot, P. (2000), ‘The logarithmic acd model: an application to the bid-ask quote process of three nyse stocks’, Annales d’Economie et de Statistique 60, 117–150.
Bauwens, L., Giot, P., Gramming, J. & Veredas, D. (2004), ‘Comparison of financial duration models via density forecasts’, International Journal of Forecasting 20, 598–609.
Bauwens, L. & Veredas, D. (2004), ‘The stochastic conditional duration model: a latent factor model for the analysis of financial durations’, Journal of Econometrics 119, 381–412.
Bhattacharya, S. & Kumar, S. (1986), ‘E-ig model in life testing’, Calcutta Statistical Association Bulletin 35, 85–90.
Bhatti, C. R. (2010), ‘The birnbaum-saunders autoregressive conditional duration model’, Mathematics and Computers in Simulation 79, 2250–2257.
Castillo, E., Hadi, A., Balakrishnan, N. & Sarabia, J. (2005), Extreme Value and Related Models with Applications in Engineering and Science, Wiley.
Chhikara, R. & Folks, T. (1989), The inverse Gaussian Distribution, Marcel Dekker, New York.
Clark, P. (1973), ‘A subordinated stochastic process model with finite variance for speculative prices’, Econometrica 41, 135–156.
Drost, F. C. &Werker, B. J. M. (2004), ‘Semiparametric duration models’, Journal of Business and Economic Statistics 22, 40–50.
Engle, R. & Russell, J. (1998), ‘Autoregressive conditional duration: a new model for irregularly-spaced transaction data’, Econometrica 66, 1127–1162.
Fernandes, M. & Grammig, J. (2006), ‘A family of autoregressive conditional duration models’, Journal of Econometrics 130, 1–23.
Frangos, N. & Karlis, D. (2004), ‘Modelling losses using an exponential-inverse gaussian distribution’, Insurance: Mathematics and Economics 35, 53–67.
Furman, E. & Zitikis, R. (2008), ‘Weighted risk capital allocations’, Insurance: Mathematics and Economics 43(2), 263–269.
Ghysels, E. (2000), ‘Some econometric recipes for high-frequency data cooking’, Journal of Business & Economic Statistics 18, 154–163.
Ghysels, E., Gouriéroux, C. & Jasiak, J. (2004), ‘Stochastic volatility duration’, Journal of Econometrics 119, 413–433.
Gómez-Déniz, E., Calderín, E. & Sarabia, J. (2013), ‘Gamma-generalized inverse gaussian class of distributions with applications’, Communications in Statistics–Theory and Methods 42, 919–933.
Grammig, J. & Maurer, K. (2000), ‘Non-monotonic hazard functions and the autoregressive conditional duration model’, Econometrics Journal 3, 16–38.
Hanagal, D. & Dabade, A. (2013), ‘Modeling inverse Gaussian frailty model for bivariate survival data’, Communication in Statistics-Theory and Methods 42, 3744–3769.
Hougard, P. (1984), ‘Life table methods for heterogeneous populations: distributions describing the heterogeneity’, Biometrika 71, 75–83.
Jørgensen, B. (1982), Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, Springer-Verlag, New York.
Jørgensen, B., Seshadri, V. & Whitmore, G. (1991), ‘On the mixture of the inverse gaussian distribution with its complementary reciprocal’, Scandinavian Journal of Statistics 18, 77–89.
Lancaster, T. (1990), The Econometric Analysis of Transition Data, Cambridge University Press.
Lancaster, T. (2003), ‘A stochastic model for the duration of a strike’, Journal of the Royal Statistical Society, Series A 135(2), 257–271.
Luca, G. D. & Gallo, G. (2004), ‘Mixture processes for intradaily financial durations’, Studies in Nonlinear Dynamics and Econometrics 8(2), 1–18.
Luca, G. D. & Gallo, G. (2009), ‘Time-varying mixing weights in mixture autoregressive conditional duration models’, Econometric Reviews 28(1), 102–120.
Luca, G. D. & Zuccolotto, P. (2003), ‘Finite and infinite mixtures for financial durations’, Metron 61, 431–455.
Lunde, A. (1999), ‘A generalized Gamma autoregressive conditional duration model’, Discussion Paper. Aalborg Universiteit.
Mohtashami, G. R. & Mohtashami, H. A. (2011), ‘Log-concavity property for some well-known distributions’, Surveys in Mathematics and its Applications 6, 203–219.
O’Hara, M. (1995), Market Microstruture Theory, Basil Blackwell Inc., Oxford.
Seshadri, V. (1993), The Inverse Gaussian Distribution: A Case Study in Exponential Families, Oxford Science Publications.
Tsay, R. (2002), Analysis of financial time series, John Wiley & Sons.
Zhang, M., Russell, J. & Tsay, R. (1983), ‘The inverse gaussian distribution: Some properties and characterizations’, The Canadian Journal of Statistics 11, 131–136.
Zhang, M., Russell, J. & Tsay, R. (2001), ‘A nonlinear autoregressive conditional duration model with applications to financial transaction data’, Journal of Econometrics 104(7), 179–207.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Francisco Blasques, Vladimír Holý, Petra Tomanová. (2024). Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros. Studies in Nonlinear Dynamics & Econometrics, 28(5), p.673. https://doi.org/10.1515/snde-2022-0008.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Revista Colombiana de Estadística

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).