Publicado
Parameter Estimation of Power Function Distribution with TL-moments
Estimación de parámetros de distribuciones de funciones de potencia con momentos TL
DOI:
https://doi.org/10.15446/rce.v38n2.51663Palabras clave:
Moments, Monte Carlo Simulation, Order Statistics, Parameter estimation, Power function distribution (en)Distribución de función de potencias, Estadísticas de orden, Estimación de parámetros, Momentos, Simulación de Monte Carlo. (es)
Descargas
La distribución de función de potencias es ampliamente usada. Dada su importancia, es necesario estimar sus parámetros de manera precisa. En este artículo, los momentos TL de la distribución de función de potencias son derivados así como sus casos especiales tales como los momentos L, LL y LH. Los coeficientes de variación, sesgo y curtosis son obtenidos a partir de los momentos L y TL. Los parámetros desconocidos son estimados y los momentos lineales son comparados con el método de momentos y estimadores máximo verosímiles en la base del sesgo, raíz del error cuadrático medio a través de un estudio de simulación. Los momentos L permiten obtener estimaciones más precisas y esta conclusión es verdad para diferentes valores paramétricos y tamaño de muestra.
https://doi.org/10.15446/rce.v38n2.51663
1University of Gujrat, Department of Statistics, Gujrat, Pakistan. Lecturer. Email: nvd.shzd@uog.edu.com
2Quaid-i-Azam University, Department of Statistics, Islamabad, Pakistan. Assistant Professor. Email: zahid.g@gmail.com
3COMSATS Institute of Information Technology, Department of Statistics, Lahore, Pakistan. Assistant Professor. Email: fshehzad.stat@gmail.com
4University of Gujrat, Department of Statistics, Gujrat, Pakistan. School Teacher. Email: mbn.shzdi@gmail.com
Accurate estimation of parameters of a probability distribution is of immense importance in statistics. Biased and imprecise estimation of parameters can lead to erroneous results. Our focus is to estimate the parameter of Power function distribution accurately because this density is now widely used for modelling various types of data. In this study, L-moments, TL-moments, LL-moments and LH-moments of power function distribution are derived. In addition, the coefficient of variation, skewness and kurtosis are obtained by method of moments, L-moments and TL-moments. Parameters of the density are estimated using linear moments and compared with method of moments and MLE on the basis of bias, root mean square error and coefficients through simulation study. L-moments proved to be superior for the parameter estimation and this conclusion is equally true for different parametric values and sample size.
Key words: Moments, Monte Carlo Simulation, Order Statistics, Parameter estimation, Power function distribution.
La distribución de función de potencias es ampliamente usada. Dada su importancia, es necesario estimar sus parámetros de manera precisa. En este artículo, los momentos TL de la distribución de función de potencias son derivados así como sus casos especiales tales como los momentos L, LL y LH. Los coeficientes de variación, sesgo y curtosis son obtenidos a partir de los momentos L y TL. Los parámetros desconocidos son estimados y los momentos lineales son comparados con el método de momentos y estimadores máximo verosímiles en la base del sesgo, raíz del error cuadrático medio a través de un estudio de simulación. Los momentos L permiten obtener estimaciones más precisas y esta conclusión es verdad para diferentes valores paramétricos y tamaño de muestra.
Palabras clave: distribución de función de potencias, estadísticas de orden, estimación de parámetros, momentos, simulación de Monte Carlo.
Texto completo disponible en PDF
References
1. Abdul-Moniem, I. B. (2007), 'L-moments and TL-moments estimation for the exponential distribution', Far East Journal of Theoretical Statistics 23(1), 51-61.
2. Abdul-Moniem, I. B. (2009), 'TL-moments and L-moments estimation for the Weibull distribution', Advances and Application in Statistics 15(1), 83-99.
3. Abdul-Moniem, I. B. (2012), 'L-moments coefficients of variations', International Journal of Statistics and Systems 7(2), 97-100.
4. Abdul-Moniem, I. & Selim, Y. M. (2009), 'TL-moments and L-moments estimation for the generalized Pareto distribution', Applied Mathematical Sciences 3(1), 43-52.
5. Ahsanullah, M. & Kabir, A. L. (1974), 'A characterization of the power function distribution', The Canadian Journal of Statistics 2(1), 95-98.
6. Ali, M. M., Woo, J. & Nadarajah, S. (2005), 'On the Ratic X/(X+ Y) for the Power Function Distribution', Pakistan Journal of Statistics 21(2), 131-138.
7. Asquith, W. H. (2007), 'L-moments and TL-moments of the generalized lambda distribution', Computational Statistics and Data Analysis 51(9), 4484-4496.
8. Bayazit, M. & Onoz, B. (2002), 'LL-moments for estimating low flow quantiles', Hydrological sciences journal 47(5), 707-720.
9. Chang, S. (2007), 'Characterization of the power function by the independence of record values', Journal of the Chungcheong Mathematical Society 20(2), 140-145.
10. El-Magd, A. & Noura, A. T. (2010), 'TL-moments of the exponentiated generalized extreme value distribution', Journal of Advanced Research 1(4), 351-359.
11. Elamir, E. A. & Seheult, A. H. (2003), 'Trimmed L-moments', Computational Statistics and Data Analysis 43(3), 299-314.
12. Hirano, K. & Porter, J. R. (2003), 'Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support', Econometrica 71(5), 1307-1338.
13. Hosking, J. R. M. (1990), 'L-moments: Analysis and estimation of distributions using linear combinations of order statistics', Journal of the Royal Statistical Society. Series B 52, 105-124.
14. Hosking, J. R. M. & Wallis, J. R. (1995), 'A comparison of unbiased and plotting-position estimators of L moments', Water Resources Research 31(8), 2019-2025.
15. Karvanen, J. (2006), 'Estimation of quantile mixtures via L-moments and trimmed L-moments', Computational Statistics and Data Analysis 51(2), 947-959.
16. Meniconi, M. & Barry, D. M. (1996), 'The power function distribution: A useful and simple distribution to assess electrical component reliability', Microelectronics Reliability 36(9), 1207-1212.
17. Rahman, H., Roy, M. K. & Baizid, A. R. (2012), 'Bayes estimation under conjugate prior for the case of power function distribution', American Journal of Mathematics and Statistics 2(3), 44-48.
18. Saran, J. & Pandey, A. (2004), 'Estimation of parameters of a power function distribution and its characterization by kth record values', Statistica 64(3), 523-536.
19. Shabri, A., Ahmad, U. N. & Zakaria, Z. A. (2009), 'TL-moments and L-moments estimation for the generalized Pareto distribution', Journal of Mathematics Research 10(10), 97-106.
20. Shahzad, M. & Asghar, Z. (2013), 'Comparing TL-Moments, L-Moments and conventional moments of dagum distribution by simulated data', Revista Colombiana de Estadistica 36(1), 79-93.
21. Sinha, S., Singh, P., Singh, D. & Singh, R. (2008), 'Power function distribution characterized by dual generalized order statistics', Journal of Reliability and Statistics Studies 1(1), 18-27.
22. Tavangar, M. (2011), 'Power function distribution characterized by dual generalized order statistics', Journal of Iranian Statistical Society 10(1), 13-27.
23. Vogel, R. M. & Fennessey, N. M. (1993), 'L-moment diagrams should replace product moment diagrams', Water Resources Research 29(6), 1745-1752.
24. Wang, Q. J. (1997), 'LH moments for statistical analysis of extreme events', Water Resources Research 33(12), 2841-2848.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n2a01,
AUTHOR = {Naveed-Shahzad, Mirza and Asghar, Zahid and Shehzad, Farrukh and Shahzadi, Mubeen},
TITLE = {{Parameter Estimation of Power Function Distribution with TL-moments}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {2},
pages = {321-334}
}
Referencias
Abdul-Moniem, I. B. (2007), ‘L-moments and TL-moments estimation for the exponential distribution’, Far East Journal of Theoretical Statistics 23(1), 51– 61.
Abdul-Moniem, I. B. (2009), ‘TL-moments and L-moments estimation for the Weibull distribution’, Advances and Application in Statistics 15(1), 83–99.
Abdul-Moniem, I. B. (2012), ‘L-moments coefficients of variations’, International Journal of Statistics and Systems 7(2), 97–100.
Abdul-Moniem, I. & Selim, Y. M. (2009), ‘TL-moments and L-moments estimation for the generalized Pareto distribution’, Applied Mathematical Sciences 3(1), 43–52.
Ahsanullah, M. & Kabir, A. L. (1974), ‘A characterization of the power function distribution’, The Canadian Journal of Statistics 2(1), 95–98.
Ali, M. M., Woo, J. & Nadarajah, S. (2005), ‘On the Ratic X/(X+ Y) for the Power Function Distribution’, Pakistan Journal of Statistics 21(2), 131–138.
Asquith, W. H. (2007), ‘L-moments and TL-moments of the generalized lambda distribution’, Computational Statistics and Data Analysis 51(9), 4484–4496.
Bayazit, M. & Onoz, B. (2002), ‘LL-moments for estimating low flow quantiles’, Hydrological sciences journal 47(5), 707–720.
Chang, S. (2007), ‘Characterization of the power function by the independence of record values’, Journal of the Chungcheong Mathematical Society 20(2), 140– 145.
El-Magd, A. & Noura, A. T. (2010), ‘TL-moments of the exponentiated generalized extreme value distribution’, Journal of Advanced Research 1(4), 351–359.
Elamir, E. A. & Seheult, A. H. (2003), ‘Trimmed L-moments’, Computational Statistics and Data Analysis 43(3), 299–314.
Hirano, K. & Porter, J. R. (2003), ‘Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support’, Econometrica 71(5), 1307– 1338.
Hosking, J. R. M. (1990), ‘L-moments: Analysis and estimation of distributions using linear combinations of order statistics’, Journal of the Royal Statistical Society. Series B 52, 105–124.
Hosking, J. R. M. & Wallis, J. R. (1995), ‘A comparison of unbiased and plotting-position estimators of L moments’, Water Resources Research 31(8), 2019– 2025.
Karvanen, J. (2006), ‘Estimation of quantile mixtures via L-moments and trimmed L-moments’, Computational Statistics and Data Analysis 51(2), 947–959.
Meniconi, M. & Barry, D. M. (1996), ‘The power function distribution: A useful and simple distribution to assess electrical component reliability’, Microelectronics Reliability 36(9), 1207-1212.
Rahman, H., Roy, M. K. & Baizid, A. R. (2012), ‘Bayes estimation under conjugate prior for the case of power function distribution’, American Journal of Mathematics and Statistics 2(3), 44–48.
Saran, J. & Pandey, A. (2004), ‘Estimation of parameters of a power function distribution and its characterization by kth record values’, Statistica 64(3), 523–536.
Shabri, A., Ahmad, U. N. & Zakaria, Z. A. (2009), ‘TL-moments and L-moments estimation for the generalized Pareto distribution’, Journal of Mathematics Research 10(10), 97–106.
Shahzad, M. & Asghar, Z. (2013), ‘Comparing TL-Moments, L-Moments and conventional moments of dagum distribution by simulated data’, Revista Colombiana de Estadistica 36(1), 79–93.
Sinha, S., Singh, P., Singh, D. & Singh, R. (2008), ‘Power function distribution characterized by dual generalized order statistics’, Journal of Reliability and Statistics Studies 1(1), 18–27.
Tavangar, M. (2011), ‘Power function distribution characterized by dual generalized order statistics’, Journal of Iranian Statistical Society 10(1), 13–27.
Vogel, R. M. & Fennessey, N. M. (1993), ‘L-moment diagrams should replace product moment diagrams’, Water Resources Research 29(6), 1745–1752.
Wang, Q. J. (1997), ‘LH moments for statistical analysis of extreme events’, Water Resources Research 33(12), 2841–2848.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Oluwafemi Samson Balogun, Muhammad Zafar Iqbal, Muhammad Zeshan Arshad, Ahmed Z. Afify, Pelumi E. Oguntunde. (2021). A new generalization of Lehmann type-II distribution: Theory, simulation, and applications to survival and failure rate data. Scientific African, 12, p.e00790. https://doi.org/10.1016/j.sciaf.2021.e00790.
2. Yang Liu, Majid Khan, Syed Masroor Anwar, Zahid Rasheed, Navid Feroze, Sanku Dey. (2022). Stress-Strength Reliability and Randomly Censored Model of Two-Parameter Power Function Distribution. Mathematical Problems in Engineering, 2022, p.1. https://doi.org/10.1155/2022/5509684.
3. Tahir Abbas, Muhammad Tahir, Muhammad Abid, Samavia Munir, Sajid Ali. (2024). The 3-component mixture of power distributions under Bayesian paradigm with application of life span of fatigue fracture. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-58245-x.
4. Anum Shafiq, Tabassum Naz Sindhu, Naif Alotaibi. (2022). A novel extended model with versatile shaped failure rate: Statistical inference with Covid -19 applications. Results in Physics, 36, p.105398. https://doi.org/10.1016/j.rinp.2022.105398.
5. Muhammad Shakeel, Muhammad Ahsan ul Haq, Ijaz Hussain, Alaa Mohamd Abdulhamid, Muhammad Faisal, Fabio Rapallo. (2016). Comparison of Two New Robust Parameter Estimation Methods for the Power Function Distribution. PLOS ONE, 11(8), p.e0160692. https://doi.org/10.1371/journal.pone.0160692.
6. Muhammad Zafar Iqbal, Muhammad Zeshan Arshad, Gamze Özel, Oluwafemi Samson Balogun. (2021). A better approach to discuss medical science and engineering data with a modified Lehmann Type – II model. F1000Research, 10, p.823. https://doi.org/10.12688/f1000research.54305.1.
7. Pratnya P Oktaviana, Irhamah. (2021). Kolmogorov-Smirnov Goodness-of-Fit test for identifying distribution of the number of earthquakes and the losses due to earthquakes in Indonesia. Journal of Physics: Conference Series, 1821(1), p.012045. https://doi.org/10.1088/1742-6596/1821/1/012045.
8. Alya Al Mutairi, Muhammad Z. Iqbal, Muhammad Z. Arshad, Badr Alnssyan, Hazem Al-Mofleh, Ahmed Z. Afify. (2021). A New Extended Model with Bathtub-Shaped Failure Rate: Properties, Inference, Simulation, and Applications. Mathematics, 9(17), p.2024. https://doi.org/10.3390/math9172024.
9. Sajjad Haider Bhatti, Muhammad Irfan, Muhammad Azeem, Maria Javed, Muhammad Ali Raza. (2024). Some modified estimators for efficient estimation of power function model. Quality and Reliability Engineering International, 40(1), p.550. https://doi.org/10.1002/qre.3409.
10. Martin Morlot, Mitja Brilly, Mojca Šraj. (2019). Characterisation of the floods in the Danube River basin through flood frequency and seasonality analysis. Acta hydrotechnica, , p.73. https://doi.org/10.15292/acta.hydro.2019.06.
11. Sajjad Haider Bhatti, Muhammad Azeem, Tanvir Ahmad, Muhammad Ali Raza. (2021). Modified moment estimators based on non-conventional measures for the power function distribution. Journal of Statistical Computation and Simulation, 91(15), p.3048. https://doi.org/10.1080/00949655.2021.1915314.
12. I.E. Okorie, A.C. Akpanta, J. Ohakwe, D.C. Chikezie, Hiroshi Shiraishi. (2017). The modified Power function distribution. Cogent Mathematics, 4(1), p.1319592. https://doi.org/10.1080/23311835.2017.1319592.
13. Muhammad Shakeel, Nazia Rehmat, Muhammad Ahsan ul Haq, Nengxiang Ling. (2017). Comparison of the robust parameters estimation methods for the two-parameters Lomax distribution. Cogent Mathematics, 4(1), p.1279397. https://doi.org/10.1080/23311835.2017.1279397.
14. Alya Al Mutairi, Muhammad Z. Iqbal, Muhammad Z. Arshad, Ahmed Z. Afify, Melike Kaplan. (2022). A New Class of the Power Function Distribution: Theory and Inference with an Application to Engineering Data. Journal of Mathematics, 2022(1) https://doi.org/10.1155/2022/1206254.
15. Riffat Jabeen, Azam Zaka. (2020). Estimation of parameters of the continuous uniform distribution: Different classical methods. Journal of Statistics and Management Systems, 23(3), p.529. https://doi.org/10.1080/09720510.2019.1639948.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2015 Revista Colombiana de Estadística
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).