Publicado

2015-07-01

Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution

Estimación clásica y bayesiana de la confiabilidad de un modelo estrés-fuerza basado en la distribución Weibull

DOI:

https://doi.org/10.15446/rce.v38n2.51674

Palabras clave:

Stress-Strength Model, System Reliability, Weibull Distribution (en)
DistribuciónWeibull, Modelo estrés-fuerza, Sistema de confiabilidad. (es)

Autores/as

  • Fatih Kizilaslan Gebze Technıcal Unıversıty, Kocaelı, Turkey
  • Mustafa Nadar Istanbul Technıcal Unıversıty, Istanbul, Turkey

In this study, we consider a multicomponent system which has k independent and identical strength components X1,...,Xk and each component is exposed to a common random stress Y when the underlying distributions are Weibull. The system is regarded as operating only if at least s out of k (1 ≤ s ≤ k) strength variables exceeds the random stress. We estimate the reliability of the system by using frequentist and Bayesian approaches. The Bayes estimate of the reliability has been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms. The asymptotic confidence interval and the highest probability density credible interval are constructed for the reliability. The comparison of the reliability estimators is made in terms of the estimated risks by the Monte Carlo simulations.

En este estudio, consideramos un sistema multicomponente con k componentes de fuerza independientes y cada componente expuesto a un estrés común aleatorio Y cuando seconsidera una distribución Bernoulli. El sistema se considera operativo si por lo menos s de los k (1 s k) exceden el estrés aleatorio. Se estima la confiabilidad del sistema usando métodos bayesianos y frecuentistas. La estimación de Bayes de la confiabilidad ha sido desarrollada usando una aproximación de Lindley y métodos MCMC debido a la falta de formas explícitas. El intervalo de confianza asintótico y el intervalo de la densidad deprobabilidad más alta se construyen para la confiabilidad. La comparación de los estimadores de confiabilidad se hace en término de los riesgos estimados por medio de simulaciones Monte Carlo.

https://doi.org/10.15446/rce.v38n2.51674

Classical and Bayesian Estimation of Reliability inMulticomponent Stress-Strength Model Based on Weibull Distribution

Estimación clásica y bayesiana de la confiabilidad deun modelo estrés-fuerza basado en la distribución Weibull

FATIH KIZILASLAN1, MUSTAFA NADAR2

1Gebze Technical University, Faculty of Science, Department of Mathematics, Kocaeli, Turkey. Ph.D. Student. Email: kizilaslan@gtu.edu.tr
2Istanbul Technical University, Faculty of Arts and Sciences, Department of Mathematical Engineering, Istanbul, Turkey. Associate Professor. Email: nadar@itu.edu.tr


Abstract

In this study, we consider a multicomponent system which has k independent and identical strength components X1...,Xk and each component is exposed to a common random stress Y when the underlying distributions are Weibull. The system is regarded as operating only if at least s out of k (1≤ s≤ k) strength variables exceeds the random stress. We estimate the reliability of the system by using frequentist and Bayesian approaches. The Bayes estimate of the reliability has been developed by using Lindleys approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms. The asymptotic confidence interval and the highest probability density credible interval are constructed for the reliability. The comparison of the reliability estimators is made in terms of the estimated risks by the Monte Carlo simulations.

Key words: Stress-Strength Model, System Reliability, Weibull\linebreak Distribution.


Resumen

En este estudio, consideramos un sistema multicomponente con k componentes de fuerzaindependientes y cada componente expuesto a un estrés común aleatorio Y cuando seconsidera una distribución Bernoulli. El sistema se considera operativo si por lo menos s de los k (1≤ s≤ k) exceden el estrés aleatorio. Se estima la confiabilidad del sistema usando métodos bayesianos y frecuentistas. La estimación de Bayes de la confiabilidad ha sido desarrollada usando una aproximación de Lindley y métodos MCMC debido a la falta de formas explícitas. El intervalo de confianza asintótico y el intervalo de la densidad deprobabilidad más alta se construyen para la confiabilidad. La comparación de los estimadores de confiabilidad se hace en término de los riesgos estimados por medio de simulaciones Monte Carlo.

Palabras clave: distribución Weibull, modelo estrés-fuerza, sistema de confiabilidad.


Texto completo disponible en PDF


References

1. Bhattacharyya, G. K. & Johnson, R. A. (1974), 'Estimation of reliability in multicomponent stress-strength model', Journal of the American Statistical Association 69, 966-970.

2. Birnbaum, Z. W. (1956), 'On a use of Mann-Whitney statistics', Proceeding Third Berkeley Symposium on Mathematical Statistics and Probability 1, 13-17.

3. Birnbaum, Z. W. & McCarty, B. C. (1958), 'A distribution-free upper confidence bounds for Pr(Y<X) based on independent samples of X and Y', The Annals of Mathematical Statistics 29(2), 558-562.

4. Chen, M. H. & Shao, Q. M. (1999), 'Monte Carlo estimation of Bayesian credible and HPD intervals', Journal of Computational and Graphical Statistics 8(1), 69-92.

5. Eryilmaz, S. (2008), 'Multivariate stress-strength reliability model and its evaluation for coherent structures', Journal of Multivariate Analysis 99, 1878-1887.

6. Eryilmaz, S. (2010), 'On system reliability in stress-strength setup', Statistics and Probability Letters 80, 834-839.

7. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003), Bayesian Data Analysis, 2 edn, Chapman & Hall, London.

8. Gradshteyn, I. S. & Ryzhik, I. M. (1994), Table of Integrals, Series and Products, fifth edn, Academic Press, Boston.

9. Hanagal, D. D. (1999), 'Estimation of system reliability', Statistical Papers 40, 99-106.

10. Hanagal, D. D. (2003), 'Estimation of system reliability in multicomponent series stress-strength models', Journal of Indian Statistical Association 41, 1-7.

11. Jae, J. K. & Eun, M. K. (1981), 'Estimation of reliability in a multicomponent stress-strength model in Weibull case', Journal of the Korean Society for Quality Management 9(1), 3-11.

12. Kotz, S., Lumelskii, Y. & Pensky, M. (2003), The Stress-Strength Model and its Generalizations: Theory and Applications, World Scientific, Singapore.

13. Kundu, D. & Gupta, R. D. (2005), 'Estimation of P(Y<X) for generalized exponential distribution', Metrika 61, 291-308.

14. Kundu, D. & Gupta, R. D. (2006), 'Estimation of P(Y<X) for Weibull distribution', IEEE Transactions on Reliability Analysis 52(2), 270-280.

15. Kundu, D. & Raqab, M. Z. (2009), 'Estimation of RP(Y<X) for three-parameter Weibull distribution', Statistics and Probability Letters 79, 1839-1846.

16. Kuo, W. & Zuo, M. J. (2003), Optimal Reliability Modeling, Principles and Applications, John Wiley & Sons, New York.

17. Lindley, D. V. (1980), 'Approximate Bayes method', Trabajos de Estadistica 3, 281-288.

18. Nadar, M., Kizilaslan, F. & Papadopoulos, A. (2014), 'Classical and Bayesian estimation of P(Y <X) for Kumaraswamy's distribution', Journal of Statistical Computation and Simulation 84(7), 1505-1529.

19. Rao, C. R. (1965), Linear Statistical Inference and Its Applications, John Wiley & Sons, New York.

20. Rao, G. S. (2012a), 'Estimation of reliability in multicomponent stress-strength model based on Rayleigh distribution', ProbStat Forum 5, 150-161.

21. Rao, G. S. (2012b), 'Estimation of reliability in multicomponent stress-strength model based on generalized exponential distribution', Revista Colombiana de Estadística 35(1), 67-76.

22. Rao, G. S. (2012b), 'Estimation of reliability in multicomponent stress-strength model based on generalized inverted exponential distribution', International Journal of Current Research and Review 4(21), 48-56.

23. Rao, G. S., Aslam, M. & Kundu, D. (2014), 'Burr Type XII distribution parametric estimation and estimation of reliability in multicomponent stress-strength model', Communication in Statistics-Theory and Methods 1.

24. Rao, G. S. & Kantam, R. R. L. (2010), 'Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution', Electronic Journal of Applied Statistical Analysis 3(2), 75-84.

25. Rao, G. S., Kantam, R. R. L., Rosaiah, K. & Reddy, J. P. (2013), 'Estimation of reliability in multicomponent stress-strength model based on inverse Rayleigh distribution', Journal of Statistics Applications & Probability 3, 261-267.

26. Tierney, L. (1994), 'Markov chains for exploring posterior distributions', The Annals of Statistics 22(4), 1701-1728.


[Recibido en junio de 2014. Aceptado en marzo de 2015]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv38n2a10,
    AUTHOR  = {Kizilaslan, Fatih and Nadar, Mustafa},
    TITLE   = {{Classical and Bayesian Estimation of Reliability inMulticomponent Stress-Strength Model Based on Weibull Distribution}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2015},
    volume  = {38},
    number  = {2},
    pages   = {467-484}
}

Referencias

Bhattacharyya, G. K. & Johnson, R. A. (1974), ‘Estimation of reliability in multicomponent stress-strength model’, Journal of the American Statistical Association 69, 966–970.

Birnbaum, Z. W. (1956), ‘On a use of Mann-Whitney statistics’, Proceeding Third Berkeley Symposium on Mathematical Statistics and Probability 1, 13–17.

Birnbaum, Z. W. & McCarty, B. C. (1958), ‘A distribution-free upper confidence bounds for Pr(Y < X) based on independent samples of X and Y ’, The Annals of Mathematical Statistics 29(2), 558–562.

Chen, M. H. & Shao, Q. M. (1999), ‘Monte Carlo estimation of Bayesian credible and HPD intervals’, Journal of Computational and Graphical Statistics 8(1), 69–92.

Eryilmaz, S. (2008), ‘Multivariate stress-strength reliability model and its evaluation for coherent structures’, Journal of Multivariate Analysis 99, 1878–1887.

Eryilmaz, S. (2010), ‘On system reliability in stress-strength setup’, Statistics and Probability Letters 80, 834–839.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003), Bayesian Data Analysis, 2 edn, Chapman & Hall, London.

Gradshteyn, I. S. & Ryzhik, I. M. (1994), Table of Integrals, Series and Products, fifth edn, Academic Press, Boston.

Hanagal, D. D. (1999), ‘Estimation of system reliability’, Statistical Papers 40, 99–106.

Hanagal, D. D. (2003), ‘Estimation of system reliability in multicomponent series stress-strength models’, Journal of Indian Statistical Association 41, 1–7.

Jae, J. K. & Eun, M. K. (1981), ‘Estimation of reliability in a multicomponent stress-strength model in Weibull case’, Journal of the Korean Society for Quality Management 9(1), 3–11.

Kotz, S., Lumelskii, Y. & Pensky, M. (2003), The Stress-Strength Model and its Generalizations: Theory and Applications, World Scientific, Singapore.

Kundu, D. & Gupta, R. D. (2005), ‘Estimation of P(Y < X) for generalized exponential distribution’, Metrika 61, 291–308.

Kundu, D. & Gupta, R. D. (2006), ‘Estimation of P(Y < X) for Weibull distribution’, IEEE Transactions on Reliability Analysis 52(2), 270–280.

Kundu, D. & Raqab, M. Z. (2009), ‘Estimation of R = P(Y < X) for threeparameter Weibull distribution’, Statistics and Probability Letters 79, 1839–1846.

Kuo, W. & Zuo, M. J. (2003), Optimal Reliability Modeling, Principles and Applications, John Wiley & Sons, New York.

Lindley, D. V. (1980), ‘Approximate Bayes method’, Trabajos de Estadistica 3, 281–288.

Nadar, M., Kizilaslan, F. & Papadopoulos, A. (2014), ‘Classical and Bayesian estimation of P(Y < X) for Kumaraswamy’s distribution’, Journal of Statistical Computation and Simulation 84(7), 1505–1529.

Rao, C. R. (1965), Linear Statistical Inference and Its Applications, John Wiley & Sons, New York.

Rao, G. S. (2012a), ‘Estimation of reliability in multicomponent stress-strength model based on generalized exponential distribution’, Revista Colombiana de Estadística 35(1), 67–76.

Rao, G. S. (2012b), ‘Estimation of reliability in multicomponent stress-strength model based on generalized inverted exponential distribution’, International Journal of Current Research and Review 4(21), 48–56.

Rao, G. S. (2012c), ‘Estimation of reliability in multicomponent stress-strength model based on Rayleigh distribution’, ProbStat Forum 5, 150–161.

Rao, G. S., Aslam, M. & Kundu, D. (2014), ‘Burr Type XII distribution parametric estimation and estimation of reliability in multicomponent stress-strength model’, Communication in Statistics-Theory and Methods 1.

Rao, G. S. & Kantam, R. R. L. (2010), ‘Estimation of reliability in multicomponent stress-strength model: log-logistic distribution’, Electronic Journal of Applied Statistical Analysis 3(2), 75–84.

Rao, G. S., Kantam, R. R. L., Rosaiah, K. & Reddy, J. P. (2013), ‘Estimation of reliability in multicomponent stress-strength model based on inverse Rayleigh distribution’, Journal of Statistics Applications & Probability 3, 261–267.

Tierney, L. (1994), ‘Markov chains for exploring posterior distributions’, The Annals of Statistics 22(4), 1701–1728.

Cómo citar

APA

Kizilaslan, F. y Nadar, M. (2015). Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution. Revista Colombiana de Estadística, 38(2), 467–484. https://doi.org/10.15446/rce.v38n2.51674

ACM

[1]
Kizilaslan, F. y Nadar, M. 2015. Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution. Revista Colombiana de Estadística. 38, 2 (jul. 2015), 467–484. DOI:https://doi.org/10.15446/rce.v38n2.51674.

ACS

(1)
Kizilaslan, F.; Nadar, M. Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution. Rev. colomb. estad. 2015, 38, 467-484.

ABNT

KIZILASLAN, F.; NADAR, M. Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution. Revista Colombiana de Estadística, [S. l.], v. 38, n. 2, p. 467–484, 2015. DOI: 10.15446/rce.v38n2.51674. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/51674. Acesso em: 22 ene. 2025.

Chicago

Kizilaslan, Fatih, y Mustafa Nadar. 2015. «Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution». Revista Colombiana De Estadística 38 (2):467-84. https://doi.org/10.15446/rce.v38n2.51674.

Harvard

Kizilaslan, F. y Nadar, M. (2015) «Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution», Revista Colombiana de Estadística, 38(2), pp. 467–484. doi: 10.15446/rce.v38n2.51674.

IEEE

[1]
F. Kizilaslan y M. Nadar, «Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution», Rev. colomb. estad., vol. 38, n.º 2, pp. 467–484, jul. 2015.

MLA

Kizilaslan, F., y M. Nadar. «Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution». Revista Colombiana de Estadística, vol. 38, n.º 2, julio de 2015, pp. 467-84, doi:10.15446/rce.v38n2.51674.

Turabian

Kizilaslan, Fatih, y Mustafa Nadar. «Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution». Revista Colombiana de Estadística 38, no. 2 (julio 1, 2015): 467–484. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/51674.

Vancouver

1.
Kizilaslan F, Nadar M. Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution. Rev. colomb. estad. [Internet]. 1 de julio de 2015 [citado 22 de enero de 2025];38(2):467-84. Disponible en: https://revistas.unal.edu.co/index.php/estad/article/view/51674

Descargar cita

CrossRef Cited-by

CrossRef citations48

1. Qazi J. Azhad, Mohd. Arshad, Nancy Khandelwal. (2022). Statistical inference of reliability in multicomponent stress strength model for pareto distribution based on upper record values. International Journal of Modelling and Simulation, 42(2), p.319. https://doi.org/10.1080/02286203.2021.1891496.

2. Parameshwar V. Pandit, Shubhashree Joshi. (2022). Applied Statistical Methods. Springer Proceedings in Mathematics & Statistics. 380, p.257. https://doi.org/10.1007/978-981-16-7932-2_16.

3. Junmei Jia, Zaizai Yan, Haohao Song, Yan Chen. (2023). Reliability estimation in multicomponent stress–strength model for generalized inverted exponential distribution. Soft Computing, 27(2), p.903. https://doi.org/10.1007/s00500-022-07628-1.

4. Manoj Chacko, Ashly Elizabeth Koshy. (2024). Estimation of multicomponent stress–strength reliability for exponentiated Gumbel distribution. Journal of Statistical Computation and Simulation, 94(7), p.1595. https://doi.org/10.1080/00949655.2023.2294104.

5. V. K. Rathaur, N. Chandra, Parmeet Kumar Vinit. (2024). On Bayesian estimation of stress–strength reliability in multicomponent system for two-parameter gamma distribution. International Journal of System Assurance Engineering and Management, 15(8), p.3817. https://doi.org/10.1007/s13198-024-02379-8.

6. Milan JOVANOVIĆ, Bojana MİLOŠEVİĆ, Marko OBRADOVİĆ. (2020). Estimation of stress-strength probability in a multicomponent model based on geometric distribution. Hacettepe Journal of Mathematics and Statistics, 49(4), p.1515. https://doi.org/10.15672/hujms.681608.

7. Cong-hua Cheng. (2024). Reliability of a Multicomponent Stress-strength Model Based on a Bivariate Kumaraswamy Distribution with Censored Data. Acta Mathematicae Applicatae Sinica, English Series, 40(2), p.478. https://doi.org/10.1007/s10255-024-1044-4.

8. Fatma Gül Akgül. (2023). Estimation of multicomponent stress–strength reliability based on unit Burr XII distribution: an application to dam occupancy rate of Istanbul, Turkey. Journal of Statistical Computation and Simulation, 93(18), p.3217. https://doi.org/10.1080/00949655.2023.2220056.

9. Fatma Gül Akgül. (2019). Reliability estimation in multicomponent stress–strength model for Topp-Leone distribution. Journal of Statistical Computation and Simulation, 89(15), p.2914. https://doi.org/10.1080/00949655.2019.1643348.

10. Mayank Kumar Jha, Sanku Dey, Yogesh Mani Tripathi. (2020). Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution. International Journal of Quality & Reliability Management, 37(3), p.428. https://doi.org/10.1108/IJQRM-04-2019-0136.

11. M. Kalaivani, R. Kannan. (2022). Estimation of reliability function and mean time to system failure for k-out-of-n systems using Weibull failure time model. International Journal of System Assurance Engineering and Management, 13(5), p.2195. https://doi.org/10.1007/s13198-022-01626-0.

12. Akram Kohansal, Shirin Shoaee, Saralees Nadarajah. (2022). Multi-component stress-strength model for Weibull distribution in progressively censored samples. Statistics & Risk Modeling, 39(1-2), p.1. https://doi.org/10.1515/strm-2020-0030.

13. Li-Feng Shang, Zai-Zai Yan. (2023). Estimation of reliability in multicomponent stress-strength based on exponential Frechet distributions. Thermal Science, 27(3 Part A), p.1747. https://doi.org/10.2298/TSCI2303747S.

14. Kazem Fayyaz Heidari, Einollah Deiri, Ezzatallah Baloui Jamkhaneh. (2021). Using the best two-observational percentile and maximum likelihood methods in a multicomponent stress-strength system to reliability estimation of inverse Weibull distribution. Life Cycle Reliability and Safety Engineering, 10(3), p.255. https://doi.org/10.1007/s41872-021-00166-z.

15. Thomas Xavier, Joby K. Jose. (2021). Estimation of Reliability in a Multicomponent Stress–Strength Model Based on Power Transformed Half-Logistic Distribution. International Journal of Reliability, Quality and Safety Engineering, 28(02), p.2150009. https://doi.org/10.1142/S0218539321500091.

16. Çagatay Çetinkaya. (2021). Reliability estimation of the stress–strength model with non-identical jointly type-II censored Weibull component strengths. Journal of Statistical Computation and Simulation, 91(14), p.2917. https://doi.org/10.1080/00949655.2021.1910948.

17. Anupam Pathak, Anoop Chaturvedi, Taruna Kumari. (2023). Estimation of Reliability in Multicomponent Set-up when Stress and Strength are Non-identical. Journal of Statistical Theory and Applications, 22(3), p.213. https://doi.org/10.1007/s44199-023-00060-w.

18. Marwa Khalil. (2017). Estimation a Stress-Strength Model for P (Yr:n1 < Xk:n2 ) Using the Lindley Distribution. Revista Colombiana de Estadística, 40(1), p.105. https://doi.org/10.15446/rce.v40n1.54349.

19. Qixuan Bi, Wenhao Gui. (2017). Bayesian and Classical Estimation of Stress-Strength Reliability for Inverse Weibull Lifetime Models. Algorithms, 10(2), p.71. https://doi.org/10.3390/a10020071.

20. Anupam Pathak, Taruna Kumari. (2024). Statistical Inferences on Multicomponent Reliability for PRHR Family of Distributions Based on Records. Journal of the Indian Society for Probability and Statistics, https://doi.org/10.1007/s41096-024-00224-6.

21. Devendra Pratap Singh, Mayank Kumar Jha, Yogesh Mani Tripathi, Liang Wang. (2023). Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions. Annals of Data Science, 10(5), p.1329. https://doi.org/10.1007/s40745-022-00429-1.

22. Çağatay ÇETİNKAYA, Ali GENC. (2022). Multicomponent stress-strength reliability estimation for the standard two-sided power distribution. Hacettepe Journal of Mathematics and Statistics, 51(2), p.587. https://doi.org/10.15672/hujms.936632.

23. Fatih Kızılaslan. (2017). Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode. Mathematics and Computers in Simulation, 136, p.36. https://doi.org/10.1016/j.matcom.2016.10.011.

24. Taruna Kumari, Anupam Pathak. (2024). Efficient estimation of the reliability functions in a multicomponent stress‐strength set‐up for a generalized family of distributions under progressive type II censoring. Quality and Reliability Engineering International, 40(5), p.2754. https://doi.org/10.1002/qre.3547.

25. Yiming Liu, Yimin Shi, Xuchao Bai, Pei Zhan. (2018). Reliability estimation of aN-M-cold-standby redundancy system in a multicomponent stress–strength model with generalized half-logistic distribution. Physica A: Statistical Mechanics and its Applications, 490, p.231. https://doi.org/10.1016/j.physa.2017.08.028.

26. Yiming Liu, Yimin Shi, Xuchao Bai, Bin Liu. (2018). Dynamic stress–strength reliability estimation of system with survival signature. Statistical Theory and Related Fields, 2(2), p.181. https://doi.org/10.1080/24754269.2018.1530902.

27. Abbas Pak, Arjun Kumar Gupta, Nayereh Bagheri Khoolenjani. (2018). On Reliability in a Multicomponent Stress-Strength Model with Power Lindley Distribution. Revista Colombiana de Estadística, 41(2), p.251. https://doi.org/10.15446/rce.v41n2.69621.

28. Marwa K. H. Hassan. (2021). A New Application of Generalized Linear Failure Rate Distribution in Agriculture Using Ranked Set Sampling. Journal of Testing and Evaluation, 49(3), p.1379. https://doi.org/10.1520/JTE20180952.

29. Yiming Liu, Yimin Shi, Xuchao Bai, Bin Liu. (2018). Stress–strength reliability analysis of system with multiple types of components using survival signature. Journal of Computational and Applied Mathematics, 342, p.375. https://doi.org/10.1016/j.cam.2018.04.029.

30. A. Pak, A. A. Jafari, N. B. Khoolenjani. (2020). On Reliability in a Multicomponent Stress-Strength Generalized Rayleigh Model Based on Record Values. Journal of Testing and Evaluation, 48(6), p.4588. https://doi.org/10.1520/JTE20170732.

31. Vikas Kumar Sharma, Sanku Dey. (2019). Estimation of reliability of multicomponent stress-strength inverted exponentiated Rayleigh model. Journal of Industrial and Production Engineering, 36(3), p.181. https://doi.org/10.1080/21681015.2019.1646032.

32. Fatih Kızılaslan. (2018). Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions. Statistical Papers, 59(3), p.1161. https://doi.org/10.1007/s00362-016-0810-7.

33. Devendra Pratap Singh, Mayank Kumar Jha, Yogesh Tripathi, Liang Wang. (2022). Reliability estimation in a multicomponent stress-strength model for unit Burr III distribution under progressive censoring. Quality Technology & Quantitative Management, 19(5), p.605. https://doi.org/10.1080/16843703.2022.2049508.

34. Tanmay Kayal, Yogesh Mani Tripathi, Sanku Dey, Shuo-Jye Wu. (2020). On estimating the reliability in a multicomponent stress-strength model based on Chen distribution. Communications in Statistics - Theory and Methods, 49(10), p.2429. https://doi.org/10.1080/03610926.2019.1576886.

35. Amal S. Hassan, Heba F. Nagy, Hiba Z. Muhammed, Mohammed S. Saad. (2020). Estimation of multicomponent stress-strength reliability following Weibull distribution based on upper record values. Journal of Taibah University for Science, 14(1), p.244. https://doi.org/10.1080/16583655.2020.1721751.

36. Mayank Kumar Jha, Sanku Dey, Refah Alotaibi, Ghadah Alomani, Yogesh Mani Tripathi. (2022). Multicomponent Stress-Strength Reliability estimation based on Unit Generalized Exponential Distribution. Ain Shams Engineering Journal, 13(5), p.101627. https://doi.org/10.1016/j.asej.2021.10.022.

37. Joby K Jose, Drisya M.. (2021). Stress-Strength Reliability Estimation of Time-Dependent Models with Fixed Stress and Phase Type Strength Distribution. Revista Colombiana de Estadística, 44(1), p.201. https://doi.org/10.15446/rce.v44n1.86519.

38. Mayank Kumar Jha, Yogesh Mani Tripathi, Sanku Dey. (2021). Multicomponent stress-strength reliability estimation based on unit generalized Rayleigh distribution. International Journal of Quality & Reliability Management, 38(10), p.2048. https://doi.org/10.1108/IJQRM-07-2020-0245.

39. Azeem Ali, Shama Khaliq, Zeeshan Ali, Sanku Dey. (2018). Reliability estimation of s-out-of-k system for non-identical stress–strength components. Life Cycle Reliability and Safety Engineering, 7(1), p.33. https://doi.org/10.1007/s41872-018-0039-7.

40. Refah Mohammed Alotaibi, Yogesh Mani Tripathi, Sanku Dey, Hoda Ragab Rezk. (2021). Estimation of Multicomponent Reliability Based on Progressively Type II Censored Data from Unit Weibull Distribution. WSEAS TRANSACTIONS ON MATHEMATICS, 20, p.288. https://doi.org/10.37394/23206.2021.20.30.

41. Tau Raphael Rasethuntsa, Mustafa Nadar. (2018). Stress–strength reliability of a non-identical-component-strengths system based on upper record values from the family of Kumaraswamy generalized distributions. Statistics, 52(3), p.684. https://doi.org/10.1080/02331888.2018.1435661.

42. Fatih Kızılaslan, Mustafa Nadar. (2018). Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution. Statistical Papers, 59(1), p.307. https://doi.org/10.1007/s00362-016-0765-8.

43. Çağatay Çetinkaya. (2021). Reliability estimation of a stress-strength model with non-identical component strengths under generalized progressive hybrid censoring scheme. Statistics, 55(2), p.250. https://doi.org/10.1080/02331888.2021.1890739.

44. Yiming Liu, Yimin Shi, Xuchao Bai, Bin Liu. (2018). Stress–strength reliability analysis of multi-state system based on generalized survival signature. Journal of Computational and Applied Mathematics, 342, p.274. https://doi.org/10.1016/j.cam.2018.03.041.

45. Sanku Dey, Fernando Antonio Moala. (2019). Estimation of reliability of multicomponent stress-strength of a bathtub shape or increasing failure rate function. International Journal of Quality & Reliability Management, 36(2), p.122. https://doi.org/10.1108/IJQRM-01-2017-0012.

46. Taruna Kumari, Anupam Pathak. (2023). Advances in IoT and Security with Computational Intelligence. Lecture Notes in Networks and Systems. 755, p.97. https://doi.org/10.1007/978-981-99-5085-0_10.

47. Emilio A. Coelho-Barros, Jorge A. Achcar, Edson Z. Martinez, Nasser Davarzani, Heike I. Grabsch. (2019). Bayesian Inference For The Segmented Weibull Distribution. Revista Colombiana de Estadística, 42(2), p.225. https://doi.org/10.15446/rce.v42n2.76815.

48. Mayank Kumar Jha, Kundan Singh, Sanku Dey, Liang Wang, Yogesh Mani Tripathi. (2024). Inference for multicomponent stress–strength reliability based on unit generalized Rayleigh distribution. Soft Computing, 28(5), p.3823. https://doi.org/10.1007/s00500-023-09596-6.

Dimensions

PlumX

Visitas a la página del resumen del artículo

540

Descargas

Los datos de descargas todavía no están disponibles.