Publicado

2017-07-01

Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes

Monitoreo de datos Poisson agregados para procesos con tamaños de muestra que varían en el tiempo

DOI:

https://doi.org/10.15446/rce.v40n2.59925

Palabras clave:

Data aggregation, EWMAG and EWMAe charts, Health surveillance, Levels of aggregation, Time-varying sample sizes (en)
agregación de datos, cartas EWMAG y EWMAe, vigilancia de la salud, niveles de agregación, tamaños de muestras variables (es)

Descargas

Autores/as

  • Victor Hugo Morales Universidad de Córdoba, Montería-Colombia
  • José Alberto Vargas Universidad Nacional de Colombia, Bogotá-Colombia
This article deals with the effect of data aggregation, when Poisson processes with varying sample sizes, are monitored. These aggregation procedures are necessary or convenient in many applications, and can simplify monitoring processes. In health surveillance applications it is a common practice to aggregate the observations during a certain time period and monitor the processes at the end of it. Also, in this type of applications it is very frequent that the sample size vary over time, which makes that instead of monitor the mean of the processes, as would be in the case of Poisson observations with constant sample size, the occurrence rate of an adverse event is monitored.
Two control charts for monitoring the count Poisson data with time-varying sample sizes are proposed by Shen et al. (2013) and Dong et al. (2008). We use the average run length (ARL) to compare the performance of these control charts when different levels of aggregation, two scenarios of generating of sample size and different out-of-control states are considered. Simulation studies show the effect of data aggregation in some situations, as well as those in which their use may be appropriate without significantly compromising the prompt detection of out-of-control signals. We also show the effect of data aggregation with an example of application in health surveillance.

Este artículo trata sobre el efecto de la agregación de datos cuando se monitorean procesos Poisson con tamaño de muestra variable. Estos procedimientos de agregación resultan necesarios o convenientes en muchas aplicaciones y pueden simplicar los procesos de monitoreo. En aplicaciones de vigilancia de la salud, es una práctica común agregar las observaciones durante un cierto período y monitorear el proceso al final de éste. También, en este tipo de aplicaciones es muy frecuente que el tamaño de muestra varíe sobre el tiempo, lo cual hace que en lugar de monitorear la media del proceso, como sería en el caso de observaciones Poisson con tamaño de muestra constante, se monitorio la tasa de ocurrencias de un evento adverso.

Dos cartas de control para monitorear el conteo de datos Poisson con tamaños de muestra que varían en el tiempo han sido propuestas por Shen et al. (2013) and Dong et al. (2008). Usamos la longitud de corrida promedio (ARL) para estudiar el desempeño de estas cartas de control cuando se consideran diferentes niveles de agregación, dos escenarios de generación de tamaños de muestra, y diferentes estados fuera de control. Estudios de simulaci
ón muestran el efecto de la agregación de datos en algunas situaciones, así como otras en las que su uso puede ser apropiado sin comprometer significativamente la pronta detección de situaciones fuera de control. También mostramos el efecto de la agregación mediante un ejemplo de aplicación en vigilancia de la salud.

Referencias

Burkom, H. S., Elbert, Y., Feldman, A. & Lin, J. (2004), 'Role of data aggregation in biosurveillance detection strategies with applications from essence', Morbidity and mortality weekly report 53, 67-73.

Dong, Y., Hedayat, A. & Sinha, B. (2008), 'Surveillance strategies for detecting changepoint in incidence rate based on exponentially weighted moving average methods', Journal of the American Statistical Association 103(482), 843-853.

Dubrawski, A. & Zhang, X. (2010), 'The role of data aggregation in public health and food safety surveillance', Biosurveillance: Methods and Case Studies pp. 161-179.

Frisén, M. & De Maré, J. (1991), 'Optimal surveillance', Biometrika 78(2), 271-280.

Gan, F. F. (1990), 'Monitoring poisson observations using modified exponentially weighted moving average control charts', Communications in Statistics-Simulation and Computation 19(1), 103-124.

Gan, F. F. (1994), 'Design of optimal exponential CUSUM control charts', Journal of Quality Technology 26(2), 109-124.

Huan, W., Shu, L., Woodall, W. H. & Tsui, K. L. (2016), 'CUSUM procedures with probability control limits for monitoring processes with variable simple sizes', IIE Transactions 48(8), 759-771.

Jiang, W., Shu, L. & Tsui, K. L. (2011), 'Weighted CUSUM control charts for monitoring poisson processes with varying sample sizes', Journal of Quality Technology 43(4), 346-362.

Reynolds, M. R. & Stoumbos, Z. G. (2000), 'A general approach to modeling CUSUM charts for a proportion', IIE Transactions 32(6), 515-535.

Reynolds, M. R. & Stoumbos, Z. G. (2004a), 'Control charts and the efficient allocation of sampling resources', Technometrics 46(2), 200-214.

Reynolds, M. R. & Stoumbos, Z. G. (2004b), 'Should observations be grouped for effective process monitoring?', Journal of Quality Technology 36(4), 343-366.

Rossi, G., Lampugnani, L. & Marchi, M. (1999), 'An approximate CUSUM procedure for surveillance of health events', Statistics in Medicine 18(16), 2111-2122.

Ryan, A. G. & Woodall, W. H. (2010), 'Control charts for poisson count data with varying simple sizes', Journal of Quality Technology 42(3), 260-275.

Schuh, A., Woodall, W. H. & Camelio, J. A. (2013), 'The effect of aggregating data when monitoring a poisson process', Quality control and applied statistics 45(3), 260-272.

Shabbak, A. & Midi, H. (2012), 'An improvement of the hotelling statistic in monitoring multivariate quality characteristics', Mathematical Problems in Engineering.

Shang, X. & Woodall, W. H. (2015), 'Dynamic probability control limits for risk-adjusted bernoulli CUSUM charts', Statistics in Medicine 34(25), 3336-3348.

Shen, X., Zou, C., Tsung, F. & Jiang, W. (2013), 'Monitoring poisson count data with probability control limits when sample sizes are time varying', Naval Research Logistics (NRL) 60(8), 625-636.

Shu, L., Jiang, W. & Tsui, K. L. (2011), 'A comparison of weighted CUSUM procedures that account for monotone changes in population size', Statistics in medicine 30(7), 725-741.

Zhou, Q., Zou, C., Wang, Z. & Jiang, W. (2012), 'Likelihood-based EWMA charts for monitoring poisson count data with time-varying sample sizes', Journal of the American Statistical Association 107(499), 1049-1062.

Cómo citar

APA

Morales, V. H. y Vargas, J. A. (2017). Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes. Revista Colombiana de Estadística, 40(2), 243–262. https://doi.org/10.15446/rce.v40n2.59925

ACM

[1]
Morales, V.H. y Vargas, J.A. 2017. Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes. Revista Colombiana de Estadística. 40, 2 (jul. 2017), 243–262. DOI:https://doi.org/10.15446/rce.v40n2.59925.

ACS

(1)
Morales, V. H.; Vargas, J. A. Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes. Rev. colomb. estad. 2017, 40, 243-262.

ABNT

MORALES, V. H.; VARGAS, J. A. Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes. Revista Colombiana de Estadística, [S. l.], v. 40, n. 2, p. 243–262, 2017. DOI: 10.15446/rce.v40n2.59925. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/59925. Acesso em: 19 ene. 2025.

Chicago

Morales, Victor Hugo, y José Alberto Vargas. 2017. «Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes». Revista Colombiana De Estadística 40 (2):243-62. https://doi.org/10.15446/rce.v40n2.59925.

Harvard

Morales, V. H. y Vargas, J. A. (2017) «Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes», Revista Colombiana de Estadística, 40(2), pp. 243–262. doi: 10.15446/rce.v40n2.59925.

IEEE

[1]
V. H. Morales y J. A. Vargas, «Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes», Rev. colomb. estad., vol. 40, n.º 2, pp. 243–262, jul. 2017.

MLA

Morales, V. H., y J. A. Vargas. «Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes». Revista Colombiana de Estadística, vol. 40, n.º 2, julio de 2017, pp. 243-62, doi:10.15446/rce.v40n2.59925.

Turabian

Morales, Victor Hugo, y José Alberto Vargas. «Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes». Revista Colombiana de Estadística 40, no. 2 (julio 1, 2017): 243–262. Accedido enero 19, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/59925.

Vancouver

1.
Morales VH, Vargas JA. Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes. Rev. colomb. estad. [Internet]. 1 de julio de 2017 [citado 19 de enero de 2025];40(2):243-62. Disponible en: https://revistas.unal.edu.co/index.php/estad/article/view/59925

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Victor Hugo Morales, Jose Alberto Vargas. (2022). The effect of aggregating multivariate count data using Poisson profiles. Communications in Statistics - Simulation and Computation, 51(5), p.2646. https://doi.org/10.1080/03610918.2019.1699570.

2. Inez M. Zwetsloot, William H. Woodall. (2021). A Review of Some Sampling and Aggregation Strategies for Basic Statistical Process Monitoring. Journal of Quality Technology, 53(1), p.1. https://doi.org/10.1080/00224065.2019.1611354.

Dimensions

PlumX

Visitas a la página del resumen del artículo

821

Descargas

Los datos de descargas todavía no están disponibles.