Publicado

2017-07-01

Goodness of fit tests for Rayleigh distribution based on Phi-divergence

Pruebas de bondad de ajuste para distribución Rayleigh basadas en Divergencia Phi

DOI:

https://doi.org/10.15446/rce.v40n2.60375

Palabras clave:

Rayleigh distribution, Goodness of fit test, Phi-divegence, Monte Carlo simulation. (en)
distribución Rayleigh, Divergencia Phi, Pruebas de bondad de ajuste, Simulaciones Monte Carlo (es)

Descargas

Autores/as

  • Mahdi Mahdizadeh Department of Statistics, Hakim Sabzevari University, Iran
  • Ehsan Zamanzade Department of Statistics, University of Isfahan, Iran
In this paper, we develop some goodness of fit tests for Rayleigh distribution based on Phi-divergence. Using Monte Carlo simulation, we compare the power of the proposed tests with some traditional goodness of fit tests including Kolmogorov-Smirnov, Anderson-Darling and Cramer von-Mises tests. The results indicate that the proposed tests perform well as compared with their competing tests in the literature. Finally, the proposed procedures are illustrated via a real data set.
En este artículo desarrollamos pruebas de bondad de ajuste para distribución Rayleigh basados en divergencia Phi. Usando simulaciones de Monte Carlo, comparamos el poder de las pruebas propuestas con algunas pruebas tradicionales incluyendo Kolmogorov-Smirnov, Anderson-Darling y Cramer von-Mises. Los resultados indican que la prueba propuesta funciona mejor que las otras pruebas reportadas en literatura. Finalmente, los procedimientos nuevos son ilustrados sobre dos conjuntos de datos reales.

Referencias

Alizadeh Noughabi, H. & Balakrishnan, N. (2016), `Tests of goodness of fit based on Phi-divergence', Journal of Applied Statistics 43(3), 412-429.

Alizadeh Noughabi, R., Alizadeh Noughabi, H. & Ebrahimi Moghaddam Behdadi, A. (2014), `An entropy test for the rayleigh distribution and power comparison', Journal of Statistical Computation and Simulation 84(1), 151-158.

Best, D., Rayner, J. & Thas, O. (2010), `Easily applied tests of fit for the Rayleigh distribution', Synkhya, B 72, 254-263.

Csiszar, I. (1967), `On topology properties of f-divergences', Studia Scientiarum Mathematicarum Hungarica 2, 329-339.

Dey, S., Dey, T. & Kundu, D. (2014), `Two parameter Rayleigh distribution: Different methods of estimation', merican Journal of Mathematical and Management Sciences 33(1), 55-74.

Jahanshahi, S., Habibi Rad, A. & Fakoor, V. (2016), `A goodness-of-fit test for Rayleigh distribution based on Helinger distance', Annals of Data Sciences 3(4), 401-411.

Johnson, N., Kotz, S. & Balakrishnan, N. (1994), Continuous univariate distributions, Wiley.

Lawless, J. F. (1982), Statistical model and methods for lifetime data, Wiley, New York.

Liese, F. & Vajda, I. (2006), `On divergences and informations in statistics and information theory', IEEE Transactions on Information Theory 52, 4394-4412.

Mahdizadeh, M. (2012), `On the use of ranked set samples in entropy based test of fit for the Laplace distribution', Revista Colombiana de Estadística 35(3), 443-455.

Siddiqui, M. (1962), `Some problems connected with Rayleigh distribution', Journal of Research of the National Bureau of Standards 66D, 167-174.

Soliman, A. & Al-Aboud, F. M. (2008), `Bayesian inference using record values from Rayleigh model with application', European Journal of Operational Research 185, 659-672.

Zamanzade, E. & Mahdizadeh, M. (2017), `Entropy estimation from ranked set samples with application to test of fit', Revista Colombiana de Estadística 40(2), 223-241.

Cómo citar

APA

Mahdizadeh, M. y Zamanzade, E. (2017). Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Revista Colombiana de Estadística, 40(2), 279–290. https://doi.org/10.15446/rce.v40n2.60375

ACM

[1]
Mahdizadeh, M. y Zamanzade, E. 2017. Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Revista Colombiana de Estadística. 40, 2 (jul. 2017), 279–290. DOI:https://doi.org/10.15446/rce.v40n2.60375.

ACS

(1)
Mahdizadeh, M.; Zamanzade, E. Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Rev. colomb. estad. 2017, 40, 279-290.

ABNT

MAHDIZADEH, M.; ZAMANZADE, E. Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Revista Colombiana de Estadística, [S. l.], v. 40, n. 2, p. 279–290, 2017. DOI: 10.15446/rce.v40n2.60375. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/60375. Acesso em: 19 ene. 2025.

Chicago

Mahdizadeh, Mahdi, y Ehsan Zamanzade. 2017. «Goodness of fit tests for Rayleigh distribution based on Phi-divergence». Revista Colombiana De Estadística 40 (2):279-90. https://doi.org/10.15446/rce.v40n2.60375.

Harvard

Mahdizadeh, M. y Zamanzade, E. (2017) «Goodness of fit tests for Rayleigh distribution based on Phi-divergence», Revista Colombiana de Estadística, 40(2), pp. 279–290. doi: 10.15446/rce.v40n2.60375.

IEEE

[1]
M. Mahdizadeh y E. Zamanzade, «Goodness of fit tests for Rayleigh distribution based on Phi-divergence», Rev. colomb. estad., vol. 40, n.º 2, pp. 279–290, jul. 2017.

MLA

Mahdizadeh, M., y E. Zamanzade. «Goodness of fit tests for Rayleigh distribution based on Phi-divergence». Revista Colombiana de Estadística, vol. 40, n.º 2, julio de 2017, pp. 279-90, doi:10.15446/rce.v40n2.60375.

Turabian

Mahdizadeh, Mahdi, y Ehsan Zamanzade. «Goodness of fit tests for Rayleigh distribution based on Phi-divergence». Revista Colombiana de Estadística 40, no. 2 (julio 1, 2017): 279–290. Accedido enero 19, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/60375.

Vancouver

1.
Mahdizadeh M, Zamanzade E. Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Rev. colomb. estad. [Internet]. 1 de julio de 2017 [citado 19 de enero de 2025];40(2):279-90. Disponible en: https://revistas.unal.edu.co/index.php/estad/article/view/60375

Descargar cita

CrossRef Cited-by

CrossRef citations12

1. Yuxin Gong, Shen Wang, Tingyue Yu, Xunzhi Jiang, Fanghui Sun. (2024). Improving adversarial robustness using knowledge distillation guided by attention information bottleneck. Information Sciences, 665, p.120401. https://doi.org/10.1016/j.ins.2024.120401.

2. Neriman Akdam. (2023). Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry, 15(9), p.1754. https://doi.org/10.3390/sym15091754.

3. Mintodê Nicodème Atchadé, Melchior N’bouké, Aliou Moussa Djibril, Shabnam Shahzadi, Eslam Hussam, Ramy Aldallal, Huda M. Alshanbari, Ahmed M. Gemeay, Abdal-Aziz H. El-Bagoury, Anoop Kumar. (2023). A New Power Topp–Leone distribution with applications to engineering and industry data. PLOS ONE, 18(1), p.e0278225. https://doi.org/10.1371/journal.pone.0278225.

4. Majdah M. Badr. (2019). Goodness-of-fit tests for the Compound Rayleigh distribution with application to real data. Heliyon, 5(8), p.e02225. https://doi.org/10.1016/j.heliyon.2019.e02225.

5. Seyed Mahdi Amir Jahanshahi, Arezo Habibi Rad, Vahid Fakoor. (2020). Some New Goodness-of-fit Tests for Rayleigh Distribution. Pakistan Journal of Statistics and Operation Research, , p.305. https://doi.org/10.18187/pjsor.v16i2.3087.

6. Safar M. Alghamdi, Mansour Shrahili, Amal S. Hassan, Rokaya Elmorsy Mohamed, Ibrahim Elbatal, Mohammed Elgarhy. (2023). Analysis of Milk Production and Failure Data: Using Unit Exponentiated Half Logistic Power Series Class of Distributions. Symmetry, 15(3), p.714. https://doi.org/10.3390/sym15030714.

7. K. M. Vaisakh, Thomas Xavier, E. P. Sreedevi. (2023). Goodness of fit test for Rayleigh distribution with censored observations. Journal of the Korean Statistical Society, 52(4), p.794. https://doi.org/10.1007/s42952-023-00222-7.

8. Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain. (2024). A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications. Heliyon, 10(17), p.e36764. https://doi.org/10.1016/j.heliyon.2024.e36764.

9. Babulal Seal, Proloy Banerjee, Shreya Bhunia, Sanjoy Kumar Ghosh. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, , p.219. https://doi.org/10.18187/pjsor.v19i2.4130.

10. Shawn Carl Liebenberg, Joseph Ngatchou-Wandji, James Samuel Allison. (2022). On a new goodness-of-fit test for the Rayleigh distribution based on a conditional expectation characterization. Communications in Statistics - Theory and Methods, 51(15), p.5226. https://doi.org/10.1080/03610926.2020.1836220.

11. V. Ahrari, S. Baratpour, A. Habibirad, V. Fakoor. (2022). Goodness of fit tests for Rayleigh distribution based on quantiles. Communications in Statistics - Simulation and Computation, 51(2), p.341. https://doi.org/10.1080/03610918.2019.1651336.

12. Mintodê Nicodème Atchadé, Melchior A.G. N'bouké, Aliou Moussa Djibril, Aned Al Mutairi, Manahil SidAhmed Mustafa, Eslam Hussam, Hassan Alsuhabi, Said G. Nassr. (2024). A new Topp-Leone Kumaraswamy Marshall-Olkin generated family of distributions with applications. Heliyon, 10(2), p.e24001. https://doi.org/10.1016/j.heliyon.2024.e24001.

Dimensions

PlumX

Visitas a la página del resumen del artículo

427

Descargas

Los datos de descargas todavía no están disponibles.