Publicado
Goodness of fit tests for Rayleigh distribution based on Phi-divergence
Pruebas de bondad de ajuste para distribución Rayleigh basadas en Divergencia Phi
DOI:
https://doi.org/10.15446/rce.v40n2.60375Palabras clave:
Rayleigh distribution, Goodness of fit test, Phi-divegence, Monte Carlo simulation. (en)distribución Rayleigh, Divergencia Phi, Pruebas de bondad de ajuste, Simulaciones Monte Carlo (es)
Descargas
Referencias
Alizadeh Noughabi, H. & Balakrishnan, N. (2016), `Tests of goodness of fit based on Phi-divergence', Journal of Applied Statistics 43(3), 412-429.
Alizadeh Noughabi, R., Alizadeh Noughabi, H. & Ebrahimi Moghaddam Behdadi, A. (2014), `An entropy test for the rayleigh distribution and power comparison', Journal of Statistical Computation and Simulation 84(1), 151-158.
Best, D., Rayner, J. & Thas, O. (2010), `Easily applied tests of fit for the Rayleigh distribution', Synkhya, B 72, 254-263.
Csiszar, I. (1967), `On topology properties of f-divergences', Studia Scientiarum Mathematicarum Hungarica 2, 329-339.
Dey, S., Dey, T. & Kundu, D. (2014), `Two parameter Rayleigh distribution: Different methods of estimation', merican Journal of Mathematical and Management Sciences 33(1), 55-74.
Jahanshahi, S., Habibi Rad, A. & Fakoor, V. (2016), `A goodness-of-fit test for Rayleigh distribution based on Helinger distance', Annals of Data Sciences 3(4), 401-411.
Johnson, N., Kotz, S. & Balakrishnan, N. (1994), Continuous univariate distributions, Wiley.
Lawless, J. F. (1982), Statistical model and methods for lifetime data, Wiley, New York.
Liese, F. & Vajda, I. (2006), `On divergences and informations in statistics and information theory', IEEE Transactions on Information Theory 52, 4394-4412.
Mahdizadeh, M. (2012), `On the use of ranked set samples in entropy based test of fit for the Laplace distribution', Revista Colombiana de Estadística 35(3), 443-455.
Siddiqui, M. (1962), `Some problems connected with Rayleigh distribution', Journal of Research of the National Bureau of Standards 66D, 167-174.
Soliman, A. & Al-Aboud, F. M. (2008), `Bayesian inference using record values from Rayleigh model with application', European Journal of Operational Research 185, 659-672.
Zamanzade, E. & Mahdizadeh, M. (2017), `Entropy estimation from ranked set samples with application to test of fit', Revista Colombiana de Estadística 40(2), 223-241.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Yuxin Gong, Shen Wang, Tingyue Yu, Xunzhi Jiang, Fanghui Sun. (2024). Improving adversarial robustness using knowledge distillation guided by attention information bottleneck. Information Sciences, 665, p.120401. https://doi.org/10.1016/j.ins.2024.120401.
2. Neriman Akdam. (2023). Bayes Estimation for the Rayleigh–Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine. Symmetry, 15(9), p.1754. https://doi.org/10.3390/sym15091754.
3. Mintodê Nicodème Atchadé, Melchior N’bouké, Aliou Moussa Djibril, Shabnam Shahzadi, Eslam Hussam, Ramy Aldallal, Huda M. Alshanbari, Ahmed M. Gemeay, Abdal-Aziz H. El-Bagoury, Anoop Kumar. (2023). A New Power Topp–Leone distribution with applications to engineering and industry data. PLOS ONE, 18(1), p.e0278225. https://doi.org/10.1371/journal.pone.0278225.
4. Majdah M. Badr. (2019). Goodness-of-fit tests for the Compound Rayleigh distribution with application to real data. Heliyon, 5(8), p.e02225. https://doi.org/10.1016/j.heliyon.2019.e02225.
5. Seyed Mahdi Amir Jahanshahi, Arezo Habibi Rad, Vahid Fakoor. (2020). Some New Goodness-of-fit Tests for Rayleigh Distribution. Pakistan Journal of Statistics and Operation Research, , p.305. https://doi.org/10.18187/pjsor.v16i2.3087.
6. Safar M. Alghamdi, Mansour Shrahili, Amal S. Hassan, Rokaya Elmorsy Mohamed, Ibrahim Elbatal, Mohammed Elgarhy. (2023). Analysis of Milk Production and Failure Data: Using Unit Exponentiated Half Logistic Power Series Class of Distributions. Symmetry, 15(3), p.714. https://doi.org/10.3390/sym15030714.
7. K. M. Vaisakh, Thomas Xavier, E. P. Sreedevi. (2023). Goodness of fit test for Rayleigh distribution with censored observations. Journal of the Korean Statistical Society, 52(4), p.794. https://doi.org/10.1007/s42952-023-00222-7.
8. Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain. (2024). A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications. Heliyon, 10(17), p.e36764. https://doi.org/10.1016/j.heliyon.2024.e36764.
9. Babulal Seal, Proloy Banerjee, Shreya Bhunia, Sanjoy Kumar Ghosh. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, , p.219. https://doi.org/10.18187/pjsor.v19i2.4130.
10. Shawn Carl Liebenberg, Joseph Ngatchou-Wandji, James Samuel Allison. (2022). On a new goodness-of-fit test for the Rayleigh distribution based on a conditional expectation characterization. Communications in Statistics - Theory and Methods, 51(15), p.5226. https://doi.org/10.1080/03610926.2020.1836220.
11. V. Ahrari, S. Baratpour, A. Habibirad, V. Fakoor. (2022). Goodness of fit tests for Rayleigh distribution based on quantiles. Communications in Statistics - Simulation and Computation, 51(2), p.341. https://doi.org/10.1080/03610918.2019.1651336.
12. Mintodê Nicodème Atchadé, Melchior A.G. N'bouké, Aliou Moussa Djibril, Aned Al Mutairi, Manahil SidAhmed Mustafa, Eslam Hussam, Hassan Alsuhabi, Said G. Nassr. (2024). A new Topp-Leone Kumaraswamy Marshall-Olkin generated family of distributions with applications. Heliyon, 10(2), p.e24001. https://doi.org/10.1016/j.heliyon.2024.e24001.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2017 Revista Colombiana de Estadística
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).